High Temperature Moderator - ANL

Sumit Bhattacharya, Yinbin Miao, Abdellatif Yacout Argonne National Laboratory

Milestones

- **Title:** Develop advanced coating solutions for high-temperature moderator applications with optimization and demonstration
 - **Level:** M3 **Due:** 3/31/2023
 - Description: Develop advanced functional coatings to enhance the performance of microreactor moderators at elevated temperatures where the coatings will be applied to a TZM substrate which is the enclosure solution material for hydride moderators. The coating parameters will be optimized based on the substrate and designed operating conditions.
- **Title:** Develop advanced design for yttrium hydride moderator encapsulation
 - **Level:** M3 **Due:** 9/30/2023
 - Description: Fabricate and test miniature advanced moderation modules (AMMs) with all essential components (i.e., hydride pellet, refractory metal liner, advanced coating, and SiC/SiC cladding) and endcaps appropriately joined.

Milestones Status:

Design of H₂ permeation barrier for TZM

- Selection of compatible materials (optimized)
- Permeation barrier architecture (optimized)
- Resistant to H.T. thermal cycling
- Resistant to radiation damages

Based on our previous Barrier Design

PVD/ALD technique

Containment: TZM alloy

Advanced Moderator Design

Containment: Nb liner + SiC

- Design & Development of tube coating technologies (*Primarily Internal tube surface*)
 - **Identification of parameters** to implement metal coating internally with plasma sputtering technique.
 - Verification of developed film quality

Significant reduction in H₂ Permeation

Functional Coating Implementation Infrastructure at ANL

External surface coating facility (metal/alloy layer)

Internal surface coating facility (metal/alloy layer)

Capabilities

- Can deposit both metal & ceramic materials.
- Minimum Tube
 diameter ~5 mm, and
 max length ~ 12 feet.

PVD: Physical Vapor Deposition ALD: Atomic layer Deposition

Internal/External surface coating facility (Ceramic layer)

Material Selection for H₂ Permeation Barrier & Thermal Performance

Barrier coating considerations:

- Low H₂ permeability,
- Stable at High temperature,
- Low neutron penalty.

Selected materials:

- H₂ permeation Barrier: Al₂O₃
- Intermediate layer with TZM: Cr
- Alternate metal layer: BCC phase CrAI

Observations:

- No surface cracks
- No separation at the interfaces.
- No interaction between the metal/ceramic layers.
- Small pore formation in the metal layers (expected).

Conclusion:

CrAl-Al₂O₃ multilayer design performance is satisfactory

Carried out under 2.5% H₂ (Ar gas

Radiation Tolerance of Developed Permeation Barrier (High Energy lons)

- Coating designs survived 750 C heavy ion irradiation with 80 MeV Xe ions. (No spalling or cracking observed)
- Coulomb effect (Type H) most likely due to use of high beam current and energy

Radiation Tolerance of Developed Permeation Barrier (Low Energy lons)

- While undergoing irradiated with 1 MeV Kr ions.
- Total dose reached 4E15 ions/cm² to achieve ~ 5 dpa damage

Observations:

- Negligible change in the microstructure.
- No observable diffusion between multilayers
- No bubble formation observed within/interfaces
- BCC CrAl and Al₂O₃ phases remain intact

IMPLEMENTING THE COATING WITHIN A TUBULAR STRUCTURE

Next Steps and Ongoing work

H₂ permeation barrier development

- Perform H_2 permeation study with the identified coating designs (H, I, G) implemented over TZM discs. Using 2.5 to 3.5% diluted H_2 gas at 700 750 °C.
 - Use current H2 permeation setup at ANL
 - Coated TZM discs prepared for LANL/INL for further testing
- Upgrade the H₂ permeation measurement capability, to allow long term 800 °C +, operation with almost pure H₂ gas.

TZM-Graphite barrier development

- Diffusion studies with graphite in contact with TZM (with and without barrier coating) at 900 °C.
- We want to implement similar coating designs to reduce complicacies.
- Continue to implementation of the final coating design over tubes.
- Manufacturing of ANL Advanced Moderator Module sample.

