

Molten Salt Reactor P R O G R A M

Thermophysical Properties of Fuel and Coolant Salt Compositions

Jason Lonergan Pacific Northwest National Laboratory

Annual MSR Campaign Review Meeting 2-4 May 2023

Goal: Provide Data to Support MSTDB

- Use PNNL, WSU, and CSU thermophysical properties expertise to build and modify thermal measurement systems.
 - Density (Pycnometry): Online/Dev
 - Heat Capacity (DSC, Drop Cal): Online
 - Enthalpy of Fusion (Drop Cal): Online
 - Viscosity (TMA): In development
 - Melting Point (TMA, DSC): Online
 - Vapor Pressure (TGA-DTA): Online/Dev
 - Thermal diffusivity (Laser Flash): Need Equipment/Development
 - Emissivity (pyrometer): Online/Dev
- FY23 Milestones
 - 1. Density and viscosity capability development.
 - 2. Thermophysical property data collection and reporting.
 - 3. Coolant salt testing (NaCI-KCI, NaCI-MgCl₂)
 - 4. Fuel salt testing (LiF-UF₄, NaCI-UCI₃)

Synthesis & Purification

• Synthesis:

- Currently set up to use CCl₄, Cl₂, HCl, H₂, and HF on U (<100 g) and Pu (~5 g).
- Other reagents can be added with quick turn around.
- Current synthesis is Schlenk-line type system in a radiological fumehood (FH).
 - > Normal limits for Pu in rad FH are ~10 mg.
 - > We load and unload in non-inert glovebox (GB).
- Inert GB work in RPL online.

≻ (10-100 g Pu).

- Purification:
 - For OH_{x.}
 - High temp vacuum heating (10⁻⁵ torr, >400
 °C) is simplest.
 - Halogenation (requires H₂ due to HF/HCl solubility or He* sparging).

Storage & Batching

- 99.99%+ pure ultra dry CI powders (Alfa Aesar) are shipped and stored in controlled environment conditions.
 UCl₃ from TerraPower.
- 99.99%+ pure dry F powders (Sigma Aldrich) are stored in controlled environmental conditions.
 - \succ UF₄ synthesis in house.

- Batching performed in a negative pressure, inert atmosphere workstation to keep salts pure.
- 5 100 grams of a given salt composition are prepared at a time, typically the whole series is batched in a day.
- Each sample is mixed using a mortar and pestle for 10 minutes to ensure uniformity.

Characterization (TGA & XRD)

- XRD & TGA analysis is used a rough characterization of salts.
 - CI & F powders are surprisingly dry
 - No mass change during TGA under 400°C.
 - NaCl, KCl, MgCl₂, LiF, NaF & UF₄ are free of large (2%+) elemental contamination.
 - o Only source compound identified by XRD.
- > No metals, water, or hydroxyl groups seen during analysis.

Characterization (Karl Fischer Titration)

- KF Titration is used a precise characterization of water content.
- Many F and CI salts can be highly hygroscopic.
- How to determine minor or trace water present?
 - KF Titration can measure single ppm levels of water content.
- Our ultra dry and high purity CI salts from the manufacturer contain between 0.1-0.5 wt% H₂O.
 - How does this affect thermal properties, stability, and corrosion?
 - How dry is dry enough?

$\mathrm{H_{2}O} + \mathrm{SO_{2}} + \mathrm{I_{2}} \xrightarrow{} \mathrm{SO_{3}} + 2 \mathrm{~HI}$

$2I^{-} \rightarrow I_2 + 2e^{-}$

Notes	Salt	Vendor	Sample Mass	Water Mass	Water Concentration
			mg	<u>μg</u>	wt.%
Ultra Dry Powder stored in inert glove box	100% KCl	Alfa Aesar	112.2	145	0.13
Ultra Dry Powder stored in inert glove box	25% NaCl - 75% KCl	Alfa Aesar	107.5	294.3	0.27
Ultra Dry Powder stored in inert glove box	51% NaCl - 49% KCl	Alfa Aesar	103	149	0.14
Ultra Dry Powder stored in inert glove box	75% NaCl - 25% KCl	Alfa Aesar	135.1	207.8	0.15
Ultra Dry Powder stored in inert glove box	100% NaCl	Alfa Aesar	118.7	122.5	0.10
High metals purity powder stored on lab shelf	100% KCl	American Elements	105.9	845.9	0.08
High metals purity powder stored on lab shelf	100% NaCl	American Elements	139.3	1099.7	0.09
Ultra Dry Powder cleaned in flowing salt loop	57% NaCl - 43% MgCl2	TerraPower	108.3	152.5	0.14
High metals purity powder stored on lab shelf	100% MgCl2	Sigma Aldrich	110.3	3051	0.55

Liquid Density (Pycnometry Approach 1) Ceramic Crucibles

Experimental setup

- Weigh an alumina crucible and measure the dimensions with calibrated calipers.
- Pack with sample powder.
- Place crucible into overflow crucible and into the furnace.
- Ramp rate of 10°C/min to desired temperature
- Held at temperature for two to three hours
- Clean any overflow and take mass with and without residual.

Liquid Density (Pycnometry Approach 2) Thermomechanical Analysis (TMA)

Experimental setup

- The salts are placed in a fixed diameter crucible.
- The probe is set to press on the salts with a fixed or modulated force.
- As the salts expand or contract the LVD

measures the one-dimensional motion with temperature.

This movement can be used to determine thermal expansion, viscosity, density and phase changes.

Density NaCl-KCl (AIMD Modeling)

Computational Method

- Ab-initio molecular dynamics (AIMD) as implemented in CP2K¹
- Single-zeta basis set with the exchange correlation approximated using PBE functional
- Density calculation (ρ):

$$\rho = \frac{NM}{N_a V}$$

NTN

• Radial distribution function (g(r)):

$$g_{ij} = \frac{1}{4\pi\rho_j r^2} \left[\frac{dn_{ij}(r)}{dr} \right]$$

• Temperature has negligible effect on local structure, which is observed in other molten salt studies¹

Liquid Density Results

- Experiments on pure NaCl and KCl are underway.
 - Initial results compare reasonably well to literature.
- Future work on fine tuning method, expanding temperatures tested, and expanding testing matrix.

AIMD model are in reasonable agreement with literature.
 Deviations possibly due to exchange-correlational approximations.

Twin Calvet Drop Calorimetry

This instrument gives us the capability for very accurate and precise heat capacity measurements of materials above from ~25 - 1000°C

1) First law of thermodynamics 2) If we have constant pressure 3) Solving for C

 $Q = C\Delta T$ and

from enthalpy:

$$dH = \delta Q + V dp$$

$$Vdp = 0$$

therefore
 $dH = \delta Q$

$$C_{p} = \left(\frac{\delta Q}{dT}\right)$$

$$C_{p} = \left(\frac{dh}{dT}\right)_{p}$$

Enthalpy of NaCl-MgCl₂-UCl₃ System

 Values range from 415 J/g at 490°C to 1316 J/g at 900°C.

- Enthalpy increases with temperature for all compositions.
- Solid state measurements match well with NIST JANAF literature.
- Liquid state measurements show an increase in values and separation between endpoints.
 - Due to vapor phase (salt and water) formation in crucibles and/or possible corrosion reactions with crucibles.

Heat Capacity of NaCl-MgCl₂-UCl₃ System

- Heat capacity of melt measured from 600 to 1000°C using TCDC.
 - CINaMg5842 decreases from 1.1615 J/g·K at 600°C to 1.0615 J/g·K by 1000°C.
- Results compare well with NIST-JANAF tables.
 - ➤ ~6% error at liquid state.
 - A fraction of the drops performed so far as NaCI-KCI series increasing total error.

- It appears that the extra energies found in the enthalpy signals are invariant with temperature above melt.
 - i.e. They don't have large effects on the slope of the curves used for heat capacity calculations.

Enthalpy of the LiF-UF4 System

 Experimental values for LiF range from ~3460 J/g at 875°C and increase to 2722 J/g at 965°C.

- Enthalpy increases with temperature for all compositions.
- Melt measurements are closer to NIST JANAF literature than CI salts.
 - Could be due to less hygroscopic nature of F salts.
- Significant gap in values between pure LiF and LiF-ThU₄ eutectic.
 - Generally lighter atomic mass of cation leads to higher phonon frequencies and higher enthalpy.
 - This is atomic mass gap is greatly enhanced when actinide element is added.

Heat Capacity of the LiF-UF4 System

- Heat capacity of melt measured from 700 to 1000°C using TCDC.
 - FLiU 7525 decreases from 2.342 J/g·K at 700°C to 2.262 J/g·K by 1000°C.

- Results compare well with NIST-JANAF tables.
 - \succ ~6% error at liquid state.
- Effect of atomic mass on heat capacity appears to track with enthalpy.
 - i.e. heavier atomic mass leads to lower phonon frequencies and reduced heat capacity.
- Reactor design will require balancing fuel load and desired heat capacity.
 - Will actinide additions lead to detrimental effects on other thermal properties?

Thermal Stability (Volatility & Vapor Pressure)

- Homogenization work identified evaporation of NaCI-KCI salts at ambient pressures.
 - Mass loss detected with flowing Ar or Air.
 - Future work with actinides.
 - > Will fission products separate from parent salt?
- Currently running TGA-DTA & RGA-MS experiments to track weight loss vs time vs temp.

TGA: Measures weight change in relation to temperature change.

Experimental Parameters (TGA)

- Temperatures from 400 to 900 °C
- Quick ramp to temp and hold.
- Flow: Breathing Ar 10 mL/min

Vapor Pressure (TGA)

Langmuir Equation's:

$$p = k\upsilon$$
 $k = \frac{\sqrt{2\pi R}}{\alpha}$ $v = \left(\frac{1}{a}\right)\left(\frac{dm}{dt}\right)\sqrt{\frac{T}{M}}$

- Experimental data significantly different than values found in NIST JANAF database.
 - Is this discrepancy due to impurities or water content?
 - $\circ\,$ Little data available on the effect of H_2O or O-H bonds on thermal stability.
 - Could the assumption of little to no volatility from melt to boiling point be incorrect?
 - NIST JANAF data on NaCl & KCl is comprised of two papers from 1926 and 1954.
 - There is a need to confirm and validate data with modern methods and instrumentation.

Enthalpy of Volatility and Sublimation

Antoine Equation

$$\ln v = A - \frac{\Delta H}{RT}$$

- The Antoine equation allows us to calculate enthalpy of volatility and sublimation.
- These calculations will allow us to correct the overestimation of enthalpy from the drop calorimeter.

	CINaK00100	CINaK10000	H2O
Enthalpy of Volatility (J/g)	4462	4987	2256
Enthalpy of Sublimation (J/g)	2430	2800	2836
$\Lambda H = \Lambda H +$	$\Lambda H + \Lambda$	\mathbf{H}	

$$\Delta ds = \Delta hc + \Delta hc + \Delta hc + \mu h + \mu rxn$$

- Estimated vapor phase in drop calorimetry crucibles
 - CLNaK00100: ~2 wt%
 - CLNaK10000: ~4 wt%

Residual gas analysis mass spectrometry (RGA-MS)

Mass Spectrometry

- Determines chemical components within the off-gas a material emits
- Gas is taken through the ion source to become ionized and flow through the quadrupole
- The quadrupole consists of cylindrical rods that act as electrodes both positively and negatively charged to accelerate the ions
- Detection limit of 200 atomic mass units

Experimental Parameters (RGA-MS)

- Temperatures from 200 to 1000 °C
- Flow: Breathing Ar 10 mL/min
- Salts melted in Quartz tube
- Argon over gas with a flow rate of 50 mL/min.
- Capillary line attached to furnace and the RGA was held at 200°C to reduce salt condensation.

Ion Source

Filter (Quadrupole)

Residual gas analysis mass spectrometry (RGA-MS)

- NaCl is vaporizing before melting point
- NaCl is leaving the system while KCl does not show evidence of vaporizing

- Starting composition has changed throughout thermal experiments
- Thermal properties will need a volatilization correction factor based on results

Emissivity Measurements

Measurement Technique

- 1. Measure temperature of salt with pyrometer (ideally in a sealed system).
- 2. Measure the temperature of salt or air space directly above salt with a calibrated thermometer.
- 3. Adjust emissivity value on pyrometer until temperature reading matches thermocouple.

Emissivity (NaCl-KCl & LiF-NaF)

Compound	D ^o ₂₉₈ (KJ/mol)
NaCl	412.1
KCl	433
LiF	577
NaF	477.3

- Both CI and F Salts exhibit a decrease in emissivity with increasing temperature.
- Emissivity's measured between 0.77 and 0.90.
 - Relatively high emissivity could imply high radiative absorption and heat transfer.
- Fluoride salts exhibit higher emissivity at a given temperature that chloride salts
 - Higher bond energy means more light is absorbed and emitted.

Summary

- A system of eight thermophysical properties have been identified as important for the design of a MSR reactor.
 - ρ, η, C_ρ,ΔH, m.p., p*, α, ε
 - Six of the eight properties have reportable data.
- Unpurified F & CI powders exhibited no detectible impurities (XRD) and no mass loss in the DTA at temperatures below 400°C.
 - DTA-TGA has determined vapor pressures significantly higher than NIST-JANAF reported values above 600°C.
- Two methods of pycnometry based liquid density measurement have been developed.
 - Initial measurements are in good agreement with literature
 - Scalable to less than 100mg of salt.
- DSC and HTDC data is complete on a full set of CINaK and preliminary CINaMg, CINaU, FLiU compositions.
 - ΔH and C_p values are consistent with previously reported on both F and Cl salts.
- Emissivity measurement system has been developed.
 - Initial measurements on FLiNa and CINaK systems.

Future & Ongoing Work

- Continue development of density, viscosity, vapor pressure and ٠ thermal diffusivity measurement capabilities.
 - Install density and vapor pressure equipment into radiological \geq spaces.
 - Develop improved methods for high volatility salts.
- Publish thermophysical data on NaCI-KCI system.
 - "Thermodynamic Investigation of the NaCl-KCl Salt System from 25 to 950 °C", J. Lonergan, V. Goncharov, M. Swinhart, K. Makovsky, M. Rollog, B. McNamara, R. Clark, D. Cutforth, C. Armstrong, X. Guo, P. Paviet, Journal of Molecular Liquids, 2023, (under review).
- Continue investigating LiF-NaF-UF₄, and NaCI-MgCl2-UCl₃ systems.
- Continue development of AIMD models to supplement microstructure and physical property characterization.
- Start synthesis, purification, and testing of UCl_3 and UF_4 ۲ produced in house.
- Start systematic investigation on the effects of water content ٠ and impurities (Ni, Fe, Cr,...) on thermophysical properties.

Acknowledgments

Funding: DOE-NE (MSR Campaign)

UCI3 & NaCI-MgCl2 Salts: TerraPower

Principle Investigator: Jason Lonergan (PNNL)

Team: Xiaofeng Guo (WSU), Scott Beckman (WSU), Ralf Sudowe (CSU), Bruce McNamara (PNNL), Richard Clark (PNNL), Charmayne Lonergan(PNNL), Kyle Makovsky (PNNL), Michaella Swinhart (PNNL/CSU), Vitaliy Goncharov (PNNL/WSU)

Thank you !!

Email Address: Jason.Lonergan@PNNL.gov

