INL/MIS-24-76808

Detailed Bottom-up Assessment of Microreactor Potential Cost Competitiveness

2024 Microreactor Program Winter Review

March 5^{th} , 2024

Abdalla Abou-Jaoude, Botros Hanna, Rodrigo de Oliveira, Ahmad Al Rashdan, Alex Huning

Overview of Presentation

1. Background

- Motivation
- Approach
- **2.** Neutronics
 - Core parametric consideration
 - Optimization for economic performance
- **3. Cost Estimation**
 - Leveraging MARVEL cost data
 - Scaling costs for MARVEL-20 variant
- 4. I&C Automation
 - Quantifying cost-benefit of autonomous steady-state ops

Background

- Motivation
 - Rising interest in the small/microreactors that can be deployed at a fraction of the cost and time (compared to the GW-scale reactors)
 - Economic competitiveness tied to mass production which is tied to demand → circular paradigm → need to unblock with techneconomic analysis
 - Need for detailed bottom-up assessment of microreactors costs for evaluating the competitiveness for several markets
- Opportunity
 - MARVEL cost data: only microreactor cost dataset available for detailed design, primary coolant system and fuel fabrication
 - Even through MARVEL is not built to be cost-competitive, MARVEL costs can still serve as a starting point for developing a microreactor cost model
- Scope
 - Develop alternate configurations of a microreactors using MARVEL as a starting point to derive a bottom-up cost estimate that is more representative of commercial concepts
 - Long-term: leverage cost data to consider other design parameters (e.g., TRISO fuel, HTGR)

Driving Question:

Can microreactors compete beyond niche markets?

(Shropshire, 2021)

⁽Abou-Jaoude, 2021)

(Abou-Jaoude, 2021)

Approach

Economics-by-Design

- Follow 'economics-by-design' approach from SA&I
 - Will not be able to fully optimize design within current scope
 - Can put economics as guiding principle for analysis
- Ultimate target is:
 - Capital cost (excluding fuel) <\$5,000/kW (Buongiorno, Jacopo, et al. Energies (2021)
- Mass production cost reductions previously assessed in: <u>https://doi.org/10.1080/00295450.2023.2206779</u>
 - 1x to $10x \rightarrow 70\%$ cost drop in factory costs
 - 10x to 100x \rightarrow 50% cost drop in factory cost
- Task breakdown in this scope:
 - Conduct neutronics analysis to evaluate alternate configurations
 - Simple thermal hydraulics verifications
 - Source term evaluation
 - Cost estimation (leveraging MARVEL data)
 - Iterate –

Core neutronics: Approach

- Studies using OpenMC:
 - Monte-Carlo method
 - Scriptable API makes it highly parametrizable
 - 2D-model for simplified analysis
- "MARVEL-like" core as starting point
- Parametric study to find condition of viability
 - E.g., criticality and heat flux
 - Kept at 20 MW_{th}
 - Should operate for 2+ years full-time
- Two design variants considered:
 - Expanded MARVEL core
 - MARVEL core as a repeated assembly (bottom)

Core neutronics optimization

- Starting from the 'expanded' MARVEL design
- Original core critical from 6 rings
- Starting targets: shift power to 20 MWth but maintain size to within ISO container
- Increased number of fuel rings & add ZrH-only rods for increased moderation
- Suitable configurations:

6

- 10-ring layout: ~2.5-year operations (min. requirement)
- 12-ring: ~5-year operations
- Heat flux in line with typical SFR at 12 rings
- BU limit may be exceeded (higher operating temps may alleviate)

	Fuel	Height			Op days for	Burnup	Heat Flux
rings	elements	(cm)	2D keff	leakage	20 MWth	(MWd/kgU)	(MW/m2)
12	300	85.15	1.354	0.097	1807	108.6	0.785
11	252	78.6	1.331	0.111	1311	101.6	1.010
10	210	72.05	1.304	0.130	912	92.4	1.330
9	162	65.5	1.265	0.153	562	81.3	1.890
8	126	58.95	1.222	0.182	317	65.4	2.700
7	90	52.4	1.163	0.217	133	43.4	4.250
6	66	45.84	1.083	0.266	29	14.6	6.630

Leveraging MARVEL costs

- Joint effort between MRP-SA&I
- Preliminary results: 72% of MARVEL costs are mapped so far to the GN-COA (Generalized Nuclear Code of Account, joint INL-EPRI standard)
 - MARVEL cost estimate: 300+ items, 5 levels of detail
- All the costs included so far are capital costs. O&M costs to be included in the next step.
- MARVEL costs contains nonrecurring costs that need to be excluded for commercial-like reactor technoeconomics

High-Level MARVEL Cost breakdown

Generating New Bottom Up Estimate

- New design : *MARVEL-20* (20MW_{th} MARVEL)
 - Linear scaling, different variables for each subaccount
 - Example, several costs are normalized per unit mass of material considered
 - Re-build bottom-up cost for MARVEL-20 based on changed parameters
- Preliminary results, considering next:
 - Other scaling variables to be considered
 - Other Scaling methods
- Challenges
 - Some MARVEL cost items are vague, hard to interpret and map to the GN-COA

- # Scaling variables list (so far)
- Pit Volume
- 2 Concrete Volume
- 3 Mass of Vessels and Support Structures
- 4 Guard Vessel mass
- 5 Mass of Drum Poison
- 6 Mass of Rod Poison
- 7 Mass of BeO Reflector
- 8 Gamma shielding mass in guard vessel
- 9 Gamma shielding Mass in reactor
- 10 Neutron shielding Mass in guard vessel
- 11 Neutron shielding Mass in SCS
- 12 Mass of Pit Neutron Shielding
- 13 Mass of Primary Coolant Systems
- 14 Mass of coolant
- 15 # of the Nuclear IO sensors
- 16 # of the Non-nuclear IO
- 17 Number of fuel pins

Fuel Costs Considerations

- Cost per fuel elements decreases with increasing the number of elements.
 - In this work, the fabrication cost is calculated the purchase of > 600 fuel elements.
- MARVEL did no incur costs such as
 - Fuel Enrichment, conversion, mining
 - Cost associated with scope to be performed by TREAT.
 - Civil works
- 2017 Cost Basis report used to estimate mining, enrichment and conversion costs.
- UZrH fabrication cost is 80,000 2023 USD/Kg compared to UO₂ 870 2017 USD/Kg

Fuel Cycle Step	Historical Mean
Mining	\$139.00/kg-NatU
Conversion	\$12.00/kg Notl
Conversion	\$13.00/kg-hat0
Enrichment	\$125.00/SWU

SWU Calculation:

 $W_{SWU} = m_U \times V(x_U) + m_t \times V(x_t) - m_{NatU} \times V(x_{Nat})$ × V(x_{Nat}) With:

$$V(x) = (2x - 1) \ln\left(\frac{x}{1 - x}\right)$$

Generating New Bottom Up Estimate MAVEL 0 vs. MARVEL 20

Changes in design:

- $20 \text{ MW}_{\text{th}} \text{ vs } 0.085 \text{ MW}_{\text{th}}$
- Bigger core (R= 80cm)
- Different core configuration
- ZrH reflector instead of BeO
- Brayton Cycle vs. Sterling engine
- Other changes (next step)

Disclaimers:

- Preliminary estimates
- Not all MARVEL costs mapped
- Need to make assumption for nonincurred costs (e.g., site activities)
- Detailed (yet incomplete) estimated

ID	Title	%
10	Capitalized Preconstruction Costs	0.2%
13	Plant Licensing	0.2%
20	Capitalized Direct Costs	0.8%
21	Structures and Improvements	0.3%
211	Site Preparation/Yard Work	0.2%
212	Reactor Island Civil Structures	1.1%
22	Reactor System	1.3%
221.11	Reactor Support	0.6%
221.12	Outer Vessel Structure	1.6%
221.13	Inner Vessel Structure	1.6%
221.21	Reactivity Control System	0.4%
221.31	Reflector	1.1%
221.32	Shield	4.0%
222.12	Reactor Coolant System	1.6%
227	Reactor Instrumentation and Control (I&C)	2.2%
23	Energy Conversion System	189%
234	Feed Heating Systems	0.0%
25	Initial Fuel Inventory	0.4%
251	Initial Fuel Inventory Material	0.4%
251.2	First Core Conversion	0.8%
251.3	First Core Enrichment	0.6%
251.4	First Core Fuel Assembly Fabrication	0.2%
252	Initial Fuel Inventory Services	0.2%
252.3	Licensing Assistance	0.2%
27	Material Requiring Special Consideration	0.2%

ID	Title	%
30	Capitalized Indirect Services Cost	0.04%
33	Startup Costs	0.2%
34	Shipping and Transportation Costs	0.2%
341	Fuel Shipping and Transportation	0.2%
40	Capitalized Training Costs	0.2%
41	Staff Recruitment and Training	0.2%
50	Capitalized Supplementary Costs	0.2%
54	Decommissioning	0.2%
Total Overnight Cost		0.401%
Total Overnight Cost excluding the fuel		0.406%

icroreactor

Mass Production Cost Reduction

- In previous work, the factory fabrication and the mass production of microreactors were assessed
- MARVEL as use-case; assuming findings are applicable to MARVEL-20
- Main findings:
 - Shifting from stick-built to 10 units/year production can decrease costs by ~70%
 - Non-fuel CAPEX so far: 12,879\$/kWe → ~3,863 \$/kWe
 - Still within the bounds of the target by (Buongiorno 2021)

NUCLEAR TECHNOLOGY · VOLUME 209 · 1697–1732 · NOVEMBER 2023 DOI: https://doi.org/10.1080/00295450.2023.2206779

Assessment of Factory Fabrication Considerations for Nuclear Microreactors

Abdalla Abou-Jaoude,⁶* Yasir Arafat,^a Chandrakanth Bolisetti,^a Botros Hanna,^a Joshua Belvedere,^b James Blocker,^b Brandon Cooper,^b Shanda Harmon,^b and Dan McCarthy^b

^aIdaho National Laboratory, Nuclear Science & Technology Directorate, Idaho Falls, Idaho ^bMunro & Associates Inc., Auburn Hills, Michigan

Received January 31, 2023 Accepted for Publication April 20, 2023

ANS

11

Framework for Automated Operation Assessment

U

 U_M

 U_T

f_{m.i}

 $t_{m,i}$

- Do additional capital costs for controller outweigh onsite staffing costs?
- Frameworks for users to estimate cost reductions from automation
- Sensor-based approach:
 - Use # of sensors to determine number of FTEs needed per reactor
 - Use # of sensors to calculate controller hardware costs during steady state operations
 - Conduct differential analysis
- Automation:

12

- Only for steady-state operations
- Transient ops are assumed to require remote intervention

$$U = \sum_{i=1}^{N_s} f_{m,i} \left(t_{mp,i} + t_{m,i} \right)$$
$$\Delta C$$
$$= U_M P - \left[\left(N_s C_c \times CRF \right) + U_T P + C_w \right]$$

Fully automated		Int
with controllers		ren
	$t_{mp,i}$	Pro
Utilization (% of time) for operation	Ns	Nu
Utilization (% of time) for fully manual operation	C S	Cor
Utilization during transients for autonomous ops		CO
Frequency of sensor i operation demand (Hz)	C_w	Wi
	CRF	Cap
Duration of sensor <i>t</i> operation measurement	Р	Cos

Steady-State Operations

Shift Sensor

Checks

Monitoring

Activities

Prognostic

Activities

Transient Operations

Automation Framework Usecase

- Inputs based on MITR (6 MWt) as a use case
- Framework levers (inputs & assumptions) can be parameterizable
- Cost savings from full automation ~90%
- Remote intervention of staff during transient operations are trivial. Anticipating each staff can cater to 19 reactors under current assumptions

Inputs	Values	
Total # of sensors	249	
# of power sensors	76	
# actuators	55	
# load following ops	2	
Ramp rate (%P/mins)	20%	

Assumptions	Values
# sensor checks per shift	2
% sensor checks for power ops	30%
# sensor monitoring per day	1
# of prognostics per week	1
Startup/shutdown ops duration	8h
Unanticipated SCRAMs	0.5/yr
Unanticipated interventions	24/yr
FTE Cost	\$250k/yr
Controller cost per IO	\$5k
I&C lifetime	10 yr
Assumed WACC	8%
Secure information transfer fee	\$60k/yr

Results	Values
Fully manual staffing costs	\$2.7M/yr
Levelized I&C costs	\$233k/yr
Transient intervention costs	\$13k/yr
% cost savings	-89%

Next Steps

- TH considerations: simple analytical model to verify needs
- Develop source term model analysis to assess the number of barriers needed for a commercial system
- Complete MARVEL cost mapping & re-baseline all estimates to 2023 USD
- Make simplified design assumptions for components not included in MARVEL (e.g., sodium pumps, residual heat transfer system)
- Iterating between neutronics costs source term TH, etc.
- Leverage I&C study to determine MARVEL-20 operational needs
- Considerations outside scope:
 - Fuel material limit considerations
 - Transient safety analysis and systems design
 - Detailed engineering optimization
- Broader Questions:
 - Are MARVEL costs baselined correctly with design parameters?
 - Are MARVEL fuel fabrication costs representative?

Abdalla.AbouJaoude@inl.gov

Questions?

