Distributed Salt Monitoring and Corrosion Control

Nathaniel Hoyt (nhoyt@anl.gov)
Jicheng Guo
Nora Shaheen

Argonne National Laboratory

Annual MSR Campaign Review Meeting 16-18 April 2024
Molten Salt Technology Development at Argonne

Argonne National Laboratory has a broad array of molten salt activities from small-scale fundamental investigations up through engineering-scale demonstrations.

Activities include fundamental chemistry, thermophysical and thermochemical property measurements, flowsheet demonstrations, process scale-up, thermal hydraulics, and the development of process monitoring and control technologies.

Supported Salts
- Chloride salts
- Fluoride salts
- Be-bearing salts
- U/TRU-bearing salts
 - Fuel reprocessing salts
 - MSR fuel salts

In-situ HEXRD of molten salt chemical and electrochemical processes

*quantity of molten salt

Bench-scale Process Development (~100 g)*

Fundamental Chemistry (~1 g)*

Engineering-scale Demonstrations (~10 kg)*

Pilot-scale Demonstrations (> 100 kg)*

Bench-scale Process Development (~100 g)

Fundamental Chemistry (~1 g)*

Engineering-scale Demonstrations (~10 kg)*

Pilot-scale Demonstrations (> 100 kg)*
Monitoring and Control of Molten Salt Systems

Monitoring and control technologies are essential to achieve successful years-long operations of molten salt reactors.

Monitoring and Control Technologies
- Particulate monitoring
- Automated sampling
- Electrochemical
- Windowless optical cell

Automated Operations of Molten Salt Flow Systems

Large-Scale Deployments

DOE NE-4: MPACT
DOE NE-4: MRWFD
MSR Campaign, ARPA-E
NA-22
DOE NE-5: ARSS
DOE NE: GAIN
Motivation and Objectives

Motivation
Monitoring and control of salt chemistry is essential for successful long duration operations of molten salt reactors. In the absence of chemistry control, vendors will not be able to satisfy evolving NRC licensing requirements for advanced reactor corrosion and criticality safety (e.g., 10CFR50, 10CFR72).

Objectives
1. Develop, deploy, and demonstrate distributed salt monitoring capabilities for pilot-scale forced-flow salt loops
2. Develop, deploy, and demonstrate distributed salt chemistry control capabilities for pilot-scale forced-flow salt loops
3. Measure key fundamental chemical and electrochemical data to enable successful long-duration operations of molten salt flow systems
Questions Operators of Molten Salt Systems Need to Ask Themselves:

• Is the salt clean enough to avoid failure of the system?
• Is an O_2/H_2O ingestion actively occurring?
• Are actinides and other species precipitating out of the salt?
• How quickly are the structural metals corroding?
• Is the loop becoming clogged from mass transfer effects?
• Are actinides plating into the structural metals?
Previous Work for the MSR Campaign:

Fundamental Properties to Enable Technology Development and Deployment

We have measured key thermodynamic and kinetic properties for most of the corrosion products and corrosion control species that are important for MSR-relevant alloys in salts such as FLiNaK.

Typical fundamental values for key species

Raw electrochemical data for key corrosion products and corrosion control species
Previous Work for the MSR Campaign:

Chemistry Monitoring and Control System Integration Activities

- Argonne deployed distributed sensors to ORNL’s Liquid Salt Test Loop (LSTL) in FY23
 - Multielectrode electrochemical sensor installed along transfer line
 - Auxiliary electrode in pump tank
 - Targeting the LSTL’s FLiNaK (with unknown impurity levels)

- During two days of operation, the distributed sensors were used to monitor LSTL’s salt status including salt redox potential, salt level and impurity concentrations.
Results from FY23 LSTL Sensor Operations

The multi-electrode sensor worked well over the short period of LSTL operations. The salt redox potential varied from 1.4 – 1.55 V vs. K⁰/K⁺ and hydroxide levels were >3200 ppm.

High-frequency resistance measured on each electrode (lower resistance means deeper immersion depth)

Linear sweep voltammograms obtained on two electrodes of the sensor installed on LSTL
Results from FY23 LSTL Sensor Operations

- ANL previously investigated the electrochemical behavior of OH\(^-\) in molten FLiNaK and obtained fundamental information such as diffusion coefficients and decomposition reaction rates using benchtop scale experiment setup

- The OH\(^-\) in the LSTL behaved similarly to the experiments at smaller scales
Argonne established an operational envelope for the LSTL based on its salt and alloy compositions.

As measured by the in-situ sensors, the LSTL was operating outside its optimal range:

- Salt redox potential in range where significant oxidation would occur
- High oxide levels from OH⁻ decomposition

Pourbaix diagram and associated operational envelope for the LSTL
Method development for contaminant quantification across complete concentration ranges

- Measurement capabilities for oxide and other species were enhanced after conclusion of the FY23 campaign

- Developing reliable techniques for use in molten salts at scale is important for monitoring corrosion products and contaminants from ppb scales through 10,000s of ppm

- Square wave voltammograms were collected for a model system

Cr$^{2+} \rightarrow$ Cr$^{3+} + e$

- Anomalous relationship between peak current and frequency was observed
 - Deviation from theory indicate nonideal effects that limit the direct feasibility of pulse techniques in molten salts
 - Nonideal effects similar to or larger than earlier studies by Hoyt, et al. (2018)
Supporting experiments through simulations

Numerical simulations of square wave voltammograms were created to support analysis and correction of the experimental data

- User defined variables such as frequency, number of electrons transferred, and solution resistance are known to affect current-potential relationship

![Potential-time profiles of simulated square wave voltammograms](image)

![Square wave voltammograms simulated at various frequencies](image)

![Linear relationship between peak current density and $f^{1/2}$](image)
Correcting data through digital simulations produces reliable results

- Theory-based simulations developed to correct for nonideal contributions that can distort experimental measurements

- Modified Krause and Ramaley formula
 - \(\phi \) is the current multiplier calculated from digital simulations
 \[
 I_p = \phi \frac{nFAD^{1/2}C_b \psi_p}{\pi^{1/2} t_p^{1/2}}
 \]

- Using our approach, we are able to calculate fundamental properties that agree well with literature and other electrochemical techniques

Peak current versus square root of frequency of chromium oxidation in chloride salts – unmodified (top) and modified (bottom)
Enhanced measurements of contaminants in molten fluorides

Oxide measurements are important as these impurities can be introduced to molten salt flow systems through a number of routes, including:

- Oxygen/moisture ingressions
- Selective dissolution of oxides present in structural alloys
- Residual oxide impurities in the bulk.

Oxide quantification is of interest via

\[2O^{2-} \rightarrow O_2 + 4e \]

By leveraging our modified Krause and Ramaley formula, proper quantification of \(O^{2-} \) can be achieved over broad concentration ranges.
FY24 MSR Campaign Sensor Operations

• For FY24, the FASTR loop at ORNL is being used to support MSR-relevant technology demonstrations

• Initial resumption of operations for FASTR took place over a period of three days using molten MgCl₂-KCl-NaCl

• An Argonne electrochemical sensor was used to monitor the salt status in the loop
 • The sensor features multielectrode sensor arrays connected to a customized multiplexer
 • The salt status was periodically monitored throughout of the loop operations (~70h)
Initial Monitoring of the FASTR Loop

• Electrochemical Monitoring
 • The ANL sensor provided crucial information for loop operations such as the salt redox potential and impurity concentrations
 • The result obtained from the sensor indicates that salt was clean with <1 ppm Cr$^{2+}$, Fe$^{2+}$, and OH$^{-}$
 • The salt potential increased modestly as O$_2$ and H$_2$O gradually entered the salt
 • Any leaks were likely extremely minor (est. $<< 1 \times 10^{-5}$ mbar L/s)

Salt redox potential variation over time within FASTR during preliminary operations
Operational Envelope for FASTR

- Similar to the LSTL, the salt redox state in FASTR could be compared to its operational envelope
 - Envelope for MgCl₂-KCl-NaCl is slightly more constrictive due to the relatively high formal potential of Mg deposition

- Even though the salt redox potential was above 0 V vs Mg⁰/Mg²⁺, Mg metal from the original purification procedure is still likely present in salt (non-equilibrium conditions)

The FASTR loop’s salt is in good condition to support future technology demonstrations for the MSR Campaign
Moving into the second half of FY24, Argonne is working to construct a pumped actinide loop

• Small-scale loop installed within flow systems glovebox
• Glovebox infrastructure in place to support electrical, thermal, and radiological protection requirements
• Glovebox includes five well furnaces capable of supporting salt operations
• Located in Pu/TRU laboratory
FY24 Activity – Pumped Actinide Loop

Preparation for loop integration is underway. The loop will ultimately support:

- Technology demonstrations in flowing actinide salts
- Corrosion studies in nonisothermal, pumped conditions
- Demonstrations of flow system automation

Overhead view of salt loop installed into glovebox furnace wells

Cantilever pump for furnace well operations

1Pump to be procured from High Temperature System Designs, Inc.
Conclusions

- Monitoring and control of the salt are essential for successful operations of molten salt systems

- Argonne has developed and deployed electrochemical sensors in support of a variety of flow systems including ORNL’s LSTL and FASTR
 - Various enhancements are required to achieve accurate salt measurements in realistic, at-scale environments

- Argonne is working to develop new versatile pumped loops to close technology gaps related to actinide-bearing fuel salts
GOVERNMENT LICENSE NOTICE
The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.

THANKS TO:
Elizabeth Stricker
Cari Launiere
Amber Polke
Thank you

Nathaniel Hoyt
(nhoyt@anl.gov)