

Microreactor Program FY2023

Winter Program Review – March 8-9th, 2023

John Jackson, Ph.D.

National Technical Director

Meeting Logistics and Objectives

- Please mute your microphone and turn your camera off
 - Ask questions during Q&A by raising your hand or using chat during the discussion
 - Speakers will turn on their cameras
- Primary purpose for the meeting is to review mid-year progress and focus on known and potential issues for FY23
- Introduce changes to the program
- Share with developers and other stakeholders
- This is a self assessment so it's "open season" for any suggested changes/updates

Instructions for Presentations

- Each Technical Area (TA) is provided time on agenda for discussion at the TA level and work package level
- Discussion should be focused on:
 - Progress made so far (Fiscal Year 2023)
 - Major FY23 milestones should be discussed with emphasis on any that may be facing issues or delayed
 - Connectivity with FY2024
- Each Technical Area Lead (TAL) will lead a session focused on their TA and related NEUP projects
- Presenters will adhere to their time slot

Current Microreactor Program Org Chart

DOE Microreactor Program – 2019-2022

Program Vision

Through cross-cutting research and development and technology demonstration support, by 2025 the **Microreactor Program will:**

- Achieve technological breakthroughs for key features of microreactors
- Empower initial demonstration of the next advanced reactor in the US
- Enable successful demonstrations of multiple domestic commercial microreactors.

Program Objectives

- Address critical cross cutting R&D needs that require unique laboratory/university capability or expertise
- Develop R&D infrastructure to support design, demonstration, regulatory issue resolution, and M&S code validation
- Develop advanced technologies that enable improvements in microreactor viability

System Integration & Analyses

- Economics & Market Analysis
- •Integrated Systems Analysis
- Applications of NEAMS Computational Tools
- Technoeconomic Analyses
- •Regulatory Development

Technology Maturation

- Advanced Heat Pipes
- Advanced Moderators
- Heat Exchangers
- •Instrumentation & Sensors
- Advanced Materials and Material Code cases

Demonstration Support Capabilities

- •Single Primary Heat Extraction & Removal Emulator (SPHERE)
- Microreactor Agile Non-nuclear
- Experimental Testbed (MAGNET) Primary Coolant Apparatus Test
- ·Validation of NEAMS tools

Microreactor Application

- •Applied R&D
- Microreactor Applications Research, Validation and Evaluation (MARVEL)

DOE Microreactor Program – 2023!

Program Vision

Through cross-cutting research and development and technology demonstration support, the Microreactor Program will enable broad deployment of microreactor technology by:

- Achieving technological breakthroughs for key features of microreactors
- Identifying and addressing technology solutions to improve the economic viability and licensing readiness of microreactors.
- Enabling successful demonstrations of multiple domestic commercial microreactors.

Program Objectives

- Address critical cross-cutting R&D needs that require unique laboratory/university capability or expertise
- Develop R&D infrastructure to support design, demonstration, regulatory issue resolution, and M&S code validation
- Develop advanced technologies that enable improvements in microreactor viability

Microreactor Application

Integrated Nuclear TestingApplied R&D

Demonstration Support Capabilities

- •Non-nuclear Testing
- •Test-beds for developers/regulators

echnology Readiness Level

Technology Maturation

 Matures fundamental microreactor enabling technologies and capabilities

System Integration & Analyses

•Identification of technology and regulatory gaps for Microreactors

Nuclear Energy University Program (NEUP)

- (Project 19-16802) Evaluation of Semi-Autonomous Passive Control Systems for HTGR Type Special Purpose Reactors U of Michigan
- (Project 19-16980) Determining the Effects of Neutron Irradiation on the Structural Integrity of Additively Manufactured Heat Exchangers for Very Small Modular Reactor Applications Auburn U
- (Project 19-17185) Demonstrating Reactor Autonomous Control Framework Using Graphite Exponential Pile MIT
- (Project 19-17416) Experiments and computations to address the safety case of heat pipe failures in Special Purpose Reactors

 U of Michigan
- (Project 20-19042) Flexible Siting Criteria and Staff Minimization for Micro-Reactors MIT
- (Project 20-19693) Evaluation of micro-reactor requirements and performance in an existing well-characterized micro-grid UIUC
- (Project 20-19735) Experiments for Modeling and Validation of Liquid-Metal Heat Pipe Simulation Tools for Micro-Reactor Texas A&M
- (Project 21-24152) Direct heating of chemical catalysts for hydrogen and fertilizer production using Microreactors Kansas State
- (Project 21-24226) Cost Reduction of Advanced Integration Heat Exchanger Technology for Micro-Reactors U of Wisconsin
- (Project 22-26910) Demonstrating Autonomous Control, Remote Operation, and Human Factors for Microreactors Under Prototypic Conditions in PUR-1 – Purdue
- (Project 22-27123) Development of Hydrogen Transport Models for High Temperature Metal Hydride Moderators CSM

Microreactors Megawatt-scale Advanced Nuclear Reactors

ENABLING TECHNOLOGIES

Fuel & Moderator

- Small Core,
- Long life,
- HALEU
- High-T Moderator

Reactor Controls

- Automation
- Compact, in-core sensors
- AI/ ML
- Remote Control

Power Conversion

- Skid mounted
- High Temp.
- Robust
- Flexible operation

Structural Material

- Creep resistance
- ASME Sec III, Div. 5 compliant
- NQA-1 supply chain

Neutron Reflector

- Low cost
- Manufacturability
- High moderating ratio .
- High temperature

Transport & Siting

- NEPA
- Vibration isolation
- Transport shielding
- Licensing modernization

Input from microreactor developers (Westinghouse example)

MAGNET/SPHERE

 Planning and execution of testing (SPHERE and MAGNET) for code validation and electrical demonstrations

High-Temperature Moderator Materials

- Beryllium Oxide (BeO) Advanced Manufacturing Techniques for near-net shape consolidation and Improved Economics
- Extend Yttrium Hydride Moderator Irradiation Testing

Integrated Modeling and Simulation of Microreactors

- Transient and Irradiation Testing of TRISO Fuel
- Neutronics Benchmarking and Criticality Testing
- TRISO Pd-SiC Interaction Margin Improvement
- Microreactor and Heat Pipe Microreactor Startup Modeling

Licensing and Regulatory

Safeguards Licensing Development

Heat Transfer and Power Conversion

- Mechanical Seals for High Temperature Helium Environment

Advanced Structural Material Manufacturing and Testing

- Graphite and Carbon-Carbon Composite Thermal Coupling Material

Microreactor Program FY23 Budget scenarios

Microreactor base R&D	FY23 Planned Target	FY23 Over Target
Project Management	\$700K	\$750K
Directed Research	\$4,600K	\$8,250K
Total	\$5,300K	\$9,000K

MARVEL	FY23 Planned Target	FY23 Over Target
Project Management	\$1,750K	\$1,750K
Directed Research	\$13,250K	\$16,250K
Total	\$15,000K	\$17,000K

FY23 Program Planned Outcome Highlights

- 1) Complete MARVEL final design and procure fuel and major components
- 2) Perform testing on MARVEL Primary Coolant Apparatus Test
- Complete MARVEL Preliminary Safety Analysis Report
- 4) Complete YH PIE and investigate other advanced moderator technologies (e.g. encapsulation)
- 5) Complete initial integrated YH handbook with MRP data (including all PIE from ATR exp).
- 6) Complete assembly of the 37 heat pipe microreactor test article.
- 7) Complete MAGNET design for Power Conversion Unit addition (air Brayton cycle)
- 8) Demonstrate use of Resonant Ultrasound Spectroscopy for detection of flaws
- 9) Design and initiate fabrication of a high temp, high pressure He component test capability
- 10) Investigate emergency planning for transportation of microreactors
- 11) Evaluate a framework for CRAB/MELCORE model for mechanistic source term
- 12) Demonstrate hardware in the loop interaction with digital twin for Microreactor Automatic Control system
- 13) Assess fuel system options for microreactors
- 14) Progress on structural materials 316H SS and refractory metal mfg

Microreactor Concepts Under Development in the U.S. (that we're aware of)

Developer	Name	Туре	Power Output (MWe/MWth)	Fuel	Coolant	moderator	refueling interval	PCU
Alpha Tech Research Corp	ARC Nuclear Generator	MSR	12 Mwe/30 MWth	LEU	Flouride salt		intermittent	
BWXT	BANR	HTGR	17 MWe/50 MWth	TRISO	Helium	graphite	5 years	Brayton Cycle
General Atomics	GA Micro	HTGR	1-10 MWe		gas			?
HolosGen	HolosQuad	HTGR	13 MWe	TRISO	Helium/CO2		10 years	Brayton Cycle
Micro Nuclear, LLC	Micro Scale Nuclear Battery	MSR/heat pipe	10 MWe	UF4	FLiBe	YH	10 years	
Nano Nuclear	Zeus	FR/HTGR	1.0 MWe/2.5 MWth	UO2	Helium			Brayton Cycle
NuGen, LLC	NuGen Engine	HTGR	2-4 MWe	TRISO	Helium			Integral direct cycle
NuScale Power	NuScale Microreactor	LMTM/heat pipe	<10 MWe	metallic	Liquid Metal	Liquid Metal	10 years	TPV
Oklo	Aurora	SFR/heat pipe	1.5 MWe	metallic	Sodium		10+ years	
Radiant Nuclear	Kaleidos Battery	HTGR	1.2 MWe	TRISO	Helium	graphite	4-6 years	
Ultra Safe Nuclear	MicroModular Reactor	HTGR	5 MWe/15 MWth	TRISO	Helium	graphite	20 years	Rankine
Westinghouse	eVINCI	heat pipe	5 MWe/15 MWth	TRISO	Sodium	graphite	8 years	Brayton Cycle
X-Energy	Xe-Mobile	HTGR	7.4 MWe/20 MWth	TRISO	Helium	graphite	3 years	Brayton Cycle

MARVEL Can Enable a New Class of Nuclear Reactors

(Microreactor Applications Research, Validation & Evaluation)

Project Goals:

 Rapid development of a small-scale microreactor that provides a platform to test unique operational aspects and applications of microreactors

Primary Objectives:

- Operational microreactor in the most accelerated timeline possible
- Produce combined heat and power (CHP) to a functional microgrid
- Share lessons learned with commercial developers
- Train future operators

U.S. DOE Sponsor Program:

Create momentum,

<u>Champion</u> rapid technology maturation to de-risk industry <u>Collaborate</u> and engage microreactor end-user companies

- 100 kW-thermal
- 20 kW-electric
- ~10 feet tall
- < 12 tons
- 2 operators
- Self-regulating

Opportunity- MARVEL Utilization

