
 
 
 
 
 
 
 
 
 
 
 

Final Technical Report 

Demonstrating Autonomous Control Framework Using Graphite Exponential Pile 
NEUP 19-17185 

Technical Workscope RC-11 
12/29/2022 

 
 

Bren Phillips1*, Jiankai Yu, Jarod Wilson1, Andrea M. Molina-Dejesus1, Benoit Forget1, Akshay 
J. Dave2, Kaichao Sun3 

 

1Massachusetts Institute of Technology, Nuclear Science and Engineering  
2Argonne National Laboratory 

3International Atomic Energy Agency 
 

*Corresponding Author (bren@mit.edu) 
  



2 
 

Executive Summary 

The push for small modular reactor deployment as a solution to CO2 emissions has highlighted the 
need for autonomous control systems for nuclear reactor systems to minimize operational costs 
and minimize human error in the operation of a large fleet of modular reactors.  Operational 
reactors are not ideal testbeds for new control systems so the MIT Graphite Exponential Pile 
(MGEP) was identified as and ideal testbed as it is subcriticdal with a keff of ~0.8 and is a flexible 
pile where instrumentation and controls can be installed and removed easily. 

A dual control rod moving system that utilized two boronated control rods traveling half the length 
of the pile and a mobile detector was designed and fabricated. This system was controlled with 
stepper motors through a LabVIEW interface.  

The MGEP neutronics were modeled in OpenMC and a digital twin was developed of the system. 
The OpenMC model was used to create simulated flux readings from a detector that were then 
used to train an artificial neural network developed using the open-source artificial neural network 
(ANN) machine learning code toolkit – NPSN.  The system was trained to respond to perturbations 
from one of the control rods, known as the initiating control rod (ICR). The neural network would 
predict the location of the ICR and move the responding control rod (RCR) to the symmetric 
position to restore a symmetric neutron flux in the pile. 

The same approach was taken with the actual control system, and the LabVIEW interface was 
interfaced with a neural network trained on the experimental data of various positions of the ICR 
and the RCR in the pile. The experimental system could then predict the location of the ICR and 
move the RCR to the symmetric position. The experimental system was able to predict the ICR 
location within about 4 cm. The digital twin system was able to perform even better by not having 
uncertainties in geometry, control rod position, detector position, or materials. 

Fault tolerance was also investigated for the system and various methods were investigated to help 
identify faulty signals from the detector and replace the bad data with simulation data. The best 
method was able to reject 95% of the faulty signals fed to the system. 

Overall the project successfully implemented an autonomous control system both using a digital 
twin of the MGEP and a physical autonomous control system on the actual MGEP. The digital 
control system was able to predict the location of an unknown movement of a control rod (ICR) 
and move another control rod (RCR) to a symmetric position. The symmetry of the flux was shown 
to be within just a little over 1% after the RCR response. Fault tolerance methods were also 
employed to demonstrate the robustness of the system to faulty data inputs. The project 
demonstrated that the use of autonomous control systems on nuclear systems is feasible. 
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1 Introduction 
Focus on the impacts of increasing CO2 emissions naturally increases the attractiveness of nuclear 
power generation technology. Indeed, next-generation micro and modular nuclear reactor 
technology has seen renewed interest. Still, future nuclear power plant designs will need to 
simultaneously make advances in operation methods in order to be cost-competitive against other 
electricity generation technologies [1]. One avenue being pursued to accomplish such strides is 
towards the development of fully autonomous reactor control systems [2]. The recent explosion in 
performance and range of Machine Learning (ML) algorithms seen in other fields appears ripe for 
application to such autonomous control systems. Nonetheless, the high degree of safety required 
for nuclear plants precludes the possibility of testing and developing nascent ML-driven control 
frameworks on existing fission systems. To bridge this gap the MIT Graphite Exponential Pile 
(MGEP) has been identified for the development of a novel, first-of-a-kind demonstration of the 
autonomous control of a nuclear reactor. Importantly, the subcritical nature of the pile eliminates 
the danger of significant radionuclide release resulting from unexpected behaviors while such a 
control system is in use. 

Autonomous control systems (ACS) have recently seen increased use in many industries with the 
rapid development of artificial intelligent (AI) technologies, including machine learning 
algorithms and their different realizations with multi-layer neural networks. The rapid deployment 
of digital instruments and sensors during the operation of nuclear power plants (NPPs) has also 
inspired the interest of ACS. The emerging advanced nuclear energy systems, such as space 
reactors, small modular reactors (SMRs), and even micro-reactors, provides additional demand for 
ACS due to the requirement of inherent safety without human intervention from the start of 
conceptual design to the final operation and maintenance. 

1.1 Motivation 
 
Autonomous control is a key technology for Special Purpose Reactors R&D. It assists reactor 
operation with enhanced safety and reliability under normal and off-normal (accident) conditions. 
More importantly, such technology could help in reducing the operational cost. The proposed 
research aims to develop a detection-prediction-feedback (DPF) framework for a nuclear system 
autonomous control (see Figure 1). Three key components in this framework are: 1) a mobile 
detector that will be placed in the nuclear system and perform online measurements, 2) a prediction 
model that will utilize measured data as input to derive computational solutions for decision-
making algorithms, 3) control feedback that will be enabled as real-time response to any unknown 
initiating events and such a response will satisfy certain pre-defined criterion. 

 

Figure 1: Detection-prediction-feedback framework for demonstrating nuclear system 
autonomous control 
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In addition to the methodology development of autonomous control, the proposed research project 
will entail a first-of-a-kind engineering demonstration on a real nuclear fission system. The in-
house university MIT Graphite Exponential Pile (MGEP) has been selected for such a task. This 
facility was recently restarted. It is now fully operational and readily available for internal users. 

1.2 Previous Work 
Several previous works have introduced autonomous control system designs, specifically for 
nuclear energy. Upadhyaya et al. [3] proposed an autonomous control system based on a space 
reactor to perform fault detection using the principal component analysis. Lin et al. [4] proposed 
an autonomous operation algorithm to prevent core damage from severe accidents such as loss of 
coolant accidents, and steam generator tube ruptures in commercial pressurized water reactors. Lin 
et al. [5] proposed the so-called Nearly Autonomous Management and Control (NAMAC) system 
that is purported to offer the operators recommendations on how to maintain both operational 
safety and reactor core performance. NAMAC is composed of a knowledge base, digital twin (DT), 
and operational workflow. These works indicate that an ACS for neutronic reactivity control is 
rarely developed for nuclear facilities. Additionally, the machine learning based kernel of these 
autonomous control systems are completely trained and demonstrated by simulation data from 
high-fidelity numerical modeling and/or simulators. The challenging issue that occurs in 
experimental demonstration of neutronic reactivity-based ACS or NACS is from the lack of 
accessible experimental data with changes in reactivity control mechanisms. 

The Massachusetts Institute of Technology (MIT) Nuclear Reactor Laboratory (NRL) has a 
graphite exponential pile (MGEP). The pile uses natural uranium as the fissile material and nuclear 
grade graphite as the moderator. The geometric layout and material composition were intentionally 
designed to be subcritical with an effective multiplication factor (keff) of approximately 0.8. Thus, 
an external neutron source is needed to produce a measurable neutron flux. Therefore due to the 
inherent safety, the MGEP serves as an excellent test bed for research, education, and 
demonstration use [2], [6]–[15]. 

2 Design and Fabrication of the MGEP control system 

2.1 MIT Graphite Exponential Pile Facility Background 
The MGEP is a subcritical nuclear reactor constructed from graphite and natural uranium. Built 
with surplus nuclear-grade graphite not needed for the construction of the MIT Reactor (MITR-I), 
the MGEP was initially erected in 1957 to serve as an experimental facility for the Department of 
Nuclear Engineering. The MGEP saw intermittent use through 1991 but sat underutilized for much 
of its life. In 2016, now-retired Professor Kord Smith oversaw the revival of the MGEP as an 
experimental and educational resource for both the Nuclear Reactor Laboratory (NRL) and 
Department of Nuclear Science and Engineering (NSE). 
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Figure 2: Engineering drawing of the MIT Graphite Exponential Pile (MGEP) experimental 
facility. The diagram on the left shows the real-world configuration of all graphite 
moderating blocks in full, whereas the diagram on the right visually separates the Lower 
Pedestal (1) from the Fuel Lattice (2) [6]. 

 

The MGEP consists of two sections, shown in Figure 2, where both sections are constructed from 
alternating layers of perpendicular graphite moderating blocks. The Lower Pedestal (LP) is a 
below-grade lattice, which has twenty-six channels available to house an external neutron source.  

The above-grade Fuel Lattice (FL) serves as the primary section of the pile used for this project. 
Standing as a square cube roughly measuring 90 inches each side, the FL is highly configurable 
for experimentation. 144 fuel channel graphite blocks arranged in a 12x12 grid run the North-
South orientation of the pile. These channels are typically loaded with aluminum-clad natural 
uranium fuel slugs, and any combination of channels can be de-fueled to serve as an insertion point 
for instrumentation. The same fuel channel blocks run half the length of the East-West oriented 
blocks. In addition, any graphite block in its entirety can be removed from the lattice structure, 
thus allowing even greater freedom in instrumentation and control system design [6]. 

The initial motivation behind the revival of the MGEP was its design as a subcritical nuclear 
reactor that could be used as an educational tool for the MIT community. Additionally, the inherent 
safety and high degree of configurability of the pile make it an ideal testbed for novel ML-based 
control systems. Several undergraduate theses completed the initial work necessary to demonstrate 
the viability of the MGEP as such an experimental facility. Starting in 2018, the basic 
characterization of the pile was compiled; beyond geometry and construction, the neutron flux 
within the FL was experimentally obtained via foil activation [6]. Building on this in 2019, Monte 
Carlo modelling of the pile was completed, determining keff  ≈ 0.8 for a fully-fueled pile [7]. In the 
same year, an undergraduate-level investigation applied rudimentary ML methodology to 
reconstruct the neutron flux of the pile and began initial fabrication of the control components used 
for this project [8]. 
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 In summation, the MGEP experimental facility serves as the perfect platform on which to 
develop a ML-driven autonomous control testbed. The layout and construction of the FL allows 
for great freedom in experiment design, particularly in relation to the positioning of 
instrumentation and control devices. Additionally, this project builds on a body of work that highly 
supports its use as a full-fledged experimental facility. Most importantly, because it is a subcritical 
facility, the MGEP can be used to safely demonstrate a first-of-a-kind, ML-driven autonomous 
control system. 

2.2 Design Considerations 
Because it is a subcritical facility, the MGEP possessed limited functionality regarding flux 
measurement and control systems. After its restart in 2016, measurements of its characteristics 
were conducted through the previously discussed foil irradiation experiments, or via three He-3 
neutron detectors. Physical control of pile characteristics was accomplished by altering the 
physical configuration of the pile, either by rearranging the fuel loading pattern, or by varying the 
location and type of external neutron source. Aluminum control rods containing Shieldwerks 
SWX-237Z30, a castable boron-silicon material, were manufactured for the pile as well. Regarding 
the wider effort to use the MGEP as a ML testbed, both the detectors and control rods will be 
referred to as Control Devices (CDs). 

While useful for basic experiments, positioning of the existing CDs within the pile was static unless 
manually altered by hand. Such limited operation is not suitable for the stated goal of 
demonstrating real-time, autonomous control. In response, a facility-specific Detector and 
Absorber Linear Motion Assembly (DALMA) was developed and will be installed within the 
MGEP. The DALMA was tailor-made both to meet the requirements of the higher-level Graphite 
Pile Control System (GPCS), as well as function within constraints uniquely posed by the pile. 

2.2.1 Experiment and Graphite Pile Control System Requirements 
A schematic of the preliminary layout for control devices within the MGEP can be seen in Figure 
3. Because the experiment design aims to measure and control the neutron flux within the pile in 
one axial direction, movement of CDs in a DALMA can be similarly restricted; channels running 
in the East-West orientation of graphite blocks were selected for use. A He-3 detector on a mobile 
rail was used. Additionally, two neutron-absorbing CDs were required, each operating over half 
the length of one channel. For operation, all CDs must be able to move independently of one 
another. Additionally, the higher-level control logic and ML models require that the position of 
CDs relative to their location in the pile is highly precise; ±1mm. As part of the concurrent work 
to develop the GPCS, a LabVIEW system was developed in tandem (discussed din later sections) 
to handle decision-making logic and a CD positioning interface. Components used in the DALMA 
were selected with compatibility in mind. 
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Figure 3: Front View of MGEP modeling 

2.2.2 Facility Limitations and Considerations 
Some limitations were imposed on DALMA design due to MGEP characteristics. Neutron flux 
within the pile is relatively small. Therefore, the absorption cross-section of the materials used was 
kept in mind. Such consideration aimed to both limit the activation of components inserted into 
open channels of the MGEP and minimize unnecessary interference with the neutron flux. As such, 
large structural components of the DALMA are made of aluminum. 

More significant restrictions on the design of the DALMA were created by the pile’s geometry 
and security procedures. The graphite block channels intended to house the position control 
assemblies measure 3.5 inches in width and 3.75 inches in height. Both the He-3 detectors and 
control rods measure roughly 1-inch in diameter, leaving limited space for components necessary 
to mechanically move them through the pile. Additionally, because the experimental setup aims to 
house all DALMAs within three concurrent EW-oriented graphite block channels, components 
located outside of the pile were limited in potential overall height. Finally, the operating security 
procedure of the MGEP facility created unique design constraints for the DALMA. When the pile 
is loaded with its natural-uranium fuel, it may not be left unsecured – the locking covers which 
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surround all four faces must be in place. Any permanently installed system would thus require the 
unloading and loading all 1,288 slugs any time the pile was not manned. More realistically, any 
installation of CDs must be able to be at least partially assembled and deconstructed. This 
restriction complicated both the DALMA’s ease of use and ability to operate precisely. 

2.3 Linear Motion Assembly Description and Specifications 
 

 
Figure 4: A generalized DALMA running the full length of a removed channel within the 
MGEP. 

To meet experimental requirements and constraints, the DALMA was selected to be a synchronous 
belt-driven system operated over T-slotted rails, controlled by a high-torque stepper motor. Both 
the He-3 detectors and neutron-absorbing control rods fit into sliders, which are attached to the 
driving belt. Figure 4 shows the basic components and design one assembly. Each DALMA can 
be independently controlled over a fixed length, currently set to be either the full or half length of 
the removed channel. Movement is accomplished through a single stepper motor and belt loop, 
with the end opposite the motor housing idler pulleys. Each DALMA will connected to a 
centralized computer, which will operate the GPCS and is powered externally via 24 V power 
supplies.  

A belt-driven system powered by a stepper motor provides several key benefits necessary for the 
precise linear movement of control components within the pile. Stepper motors are widely used 
for a variety of purposes, and as such come in a variety of performance specifications. 
Additionally, stepper motors are highly precise. Using structural rail framing for both mounting of 
the stepper/pulley sub-assemblies as well as a guide for the CDs allows the system to be more 
modular – operating length of a DALMA can be altered by simply changing the mounting location 
of the idler pullies and belt length. Additionally, the guide rail eliminates the possibility of off-axis 
movement. Finally, the described design characteristics minimize the use of custom in-house parts, 
by implementing off-the-shelf electronic and mechanical components wherever possible. 
Components that were built in-house were mostly manufactured from 3D-printed PLA plastic, 
allowing faster iterative development and production. 
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2.3.1 Component Housing and Rail Slider Schematics 
3D renders of the DALMA sub-assemblies can be seen in Figure 5 & Figure 6. Table 1 contains 
further description of the individually labeled components. Each DALMA’s components can 
grouped into three main categories; guide and support framing, electronic and mechanical pieces, 
and 3D-printed housing fixtures made from 100% infill PLA. The entire designs shown below, 
and their subsequent fabrication, were completed in-house, specifically to support efforts to 
demonstrate autonomous control. However, whenever possible, off-the-shelf components were 
selected in order to minimize complexity and overhead. All of the structural rail pieces are standard 
30 mm T-slotted aluminum framing, widely available and used in lab settings. Electronic and 
mechanical parts were also selected from common-spec options; the belt and pulleys are standard 
2GT spec – commonly found in 3D-printer applications. Utilizing 3D-printing technology to 
produce the housing components allowed for fast, low-cost iteration of the overall design and rapid 
production of finalized parts. Indeed, these pieces were re-designed and tweaked many times, to 
improve overall system rigidity, precision, ease-of-use, and modularity. 

 

Figure 5: Motor housing sub-assembly and sliders. The left image shows a render of the 
motor sub-assembly, and the right image shows the sliders used to house the He-3 neutron 
detector and control rods. Corresponding figure labels are found in Table 1. 
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Figure 6: Idler pulley housing sub-assemblies for single and dual-CD DALMAs. The left 
render shows the idler pulley housing for a dual-CD DALMA and is attached to the center 
of the guide rail. The right render shows the pulley housing for a single-CD DALMA and is 
attached to the end of the guide rail. Corresponding figure labels are found in Table 1. 

Table 1: Sub-assembly component label guide 

 
The position of each CD will be individually controlled via a single belt loop driven by a NEMA23 
high-torque stepper motor. The motor is controlled via a STEPPERONLINE DM542T driver, 
which in turn receives input 5 V signals for motor direction and speed from a programmable board.  
A rendered image of a mounted motor can be seen in the left side image of Fig 5. The motor itself 
is secured to a 3D-printed mounting piece which is bolted between two 7-inch structural rail frames 
which are orthogonal to the end of the guide rail. The drive shaft of the motor is coupled to an 8 
mm axle, which supports a larger 2GT pulley. In a slightly novel printing process, bearings have 
been imbedded into the 3D-printed motor housing pieces, to reduce friction and drag on the drive 
axle during operation. 
 
Because the experimental setup requires that a variable number of CDs be configured in half-
length and full-length channels of the MGEP, two separate pulley housings were necessary. Both 
are similar, and share basic components, as can be seen in Figure 6. Both are designed to sit 
opposite the motor sub-assembly for a CD, looping the belt back towards the corresponding slider. 
The pulley sub-assembly on the left side of Fig. 6 is for a dual-CD DALMA setup. As such it 
houses four smaller 2GT pulleys and is mounted in the middle of the guide rail. The right-side 
image of Fig. 6 shows the pulley sub-assembly for a single-CD configured DALMA, which only 
contains two 2GT pulleys. Because this housing is for a full-length configuration, it is affixed to 
the end of the guide rail opposite the driving motor. The pulleys within these sub-assemblies spin 
freely with the drive belt, and as such the 8 mm axles are stationary, locked in place via clamp 
collars attached to the outer face of the 3D-printed housing pieces. These axles are machined to 60 
mm in length to fit within the channel width. 

The CDs themselves sit within 3D-printed sliders, which allow motion over the guide rail. The 
slider designs for both the He-3 neutron detector and the control rods are very similar, as can be 
seen in Fig 6. Due to physical specifications, the detector sliders are slightly smaller. In addition, 



14 
 

one slider piece for the He-3 neutron detector has a through-port to allow the power and data-
transfer ethernet cable to be connected. All sliders are fitted with chamfered rubber bearings which 
sit on the side channels of the guide rail. These bearings allow the CDs housed within the slider 
pieces to smoothly glide in line with the guide rail. The sliders also have two 5 mm holes where 
the drive belt is affixed, thus completing the belt loop. Fig. 7 shows a functioning DALMA with a 
He-3 neutron detector inserted, as well as a dual-CD DALMA during assembly. 

 

 

Figure 7: From left to right, top to bottom; motor sub-assembly of a DALMA inserted into 
the MGEP, pulley sub-assembly of a DALMA inserted into MGEP, dual-CD DALMA 
partially assembled out of pile, dual-CD pulley sub-assembly with belt attached in one 
direction. 

 

Figure 8: Hardware fabrication a) detector moving system; b) dual control rods moving 
system. 
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1.1 Positioning Calibration Procedure 
Because the MGEP must be secured via sheet metal covers when not in use, any experimental 
facilities developed for it much be removed should they extend beyond any face of the pile. For 
the DALMAs, this means they must be partially disassembled between experiments. However, 
due to doors on the sides of the panels through which the rails pass, it was possible to midify the 
doors to allow the covers to be in place, and locked whiel the rails are inserted. Thus, the need to 
remove the rails after every experiment was avoided for much of the project. Because high 
precision is necessary, calibration of the system is needed. As their design was completed and built 
in-house, a software-based calibration procedure was also developed. For every CD, limit switches 
are attached to the guide rail via 3D-printed housing pieces on either end of the belt. They are 
mounted in a way such that the outer edges of the sliders will trigger the switch when the CD 
reaches the minimum and maximum travel positions of the DALMA. The distance between these 
positions is accurately measured and assumed to be a fixed value. Using a Python script, the 
number of steps taken by the motor to move the CD between the minimum and maximum position 
is counted. With these two values, an accurate unit distance travelled per step is determined, thus 
allowing precise position control of the CD. Position precision after calibration is ±1 mm.  

3 MGEP Digital Twin and the Virtual Control System 
A virtual control system has been developed in this project to theoretically demonstrate the 
autonomous operation of the MIT Graphite Exponential Pile (MGEP). The system is designed to 
autonomously respond to perturbations through linear actuation of control rods with neutron 
poisons. In this system, the unknown perturbation from a control rod position change is modeled 
and simulated by Monte Carlo neutron transport code -- OpenMC and then analyzed by a well-
trained neural network (NN) to provide a regression model to predict the unknown control rod 
perturbation. And the responding control rod is then actuated to minimize the object function. 

Afterwards, the virtual control system has been integrated with hardware to develop the 
experimental control system on the pile. In this system, the unknown control rod perturbation is 
captured by three to four Helium-3 neutron detectors at different spatial positions in the pile. 
Similarly, NN-based regression model is previously trained by the experimental data collected 
from Helium-3 neutron detectors. And the responding control rod is finally actuated to keep the 
neutron flux symmetric along the control rod direction. 

The virtual control system has been developed using LabVIEW-based graphical programming 
language, and has integrated three major components: a neural network surrogate model to 
generate neutron flux detector signals, a neural network regression model to predict the target 
position of the unknown control rod, and a module to input unknown control rod movement. 

This section describes the verification of the control system by evaluating the minimization of the 
steady-state and transient error, and investigating system stability.  

The neural network models will be trained by the numerical data obtained from OpenMC. Finally, 
optimized in-pile configuration of neutron detectors will be present to achieve the good regression 
results with acceptable accuracy. 
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3.1 Modeling and Simulation 
The training data sets which are used to train neural network in virtual control system are generated 
by the modeling and simulation with Monte Carlo neutron transport code – OpenMC [16].  

Figure 3 illustrates the front view of the high-fidelity modeling of MGEP, which is a subcritical 
facility and has been considered as an excellent test bed for the experimental demonstration of 
nuclear reactor physics. 

As shown in the figure, the neutron fluxes of interest are referenced relative to the graphite layers 
spanning from “F”, “G”, “I” and “J”. Neutron detectors may be placed in these channels to 
characterize the in-pile neutron flux distribution. The exact locations of neutron detectors will be 
adjusted to achieve optimal performance of neural network prediction models used in the virtual 
control system. In order to perturb the neutron flux distribution in four layers of interest, an in-pile 
facility has been developed to actuate linear motion of two control rods, which are the initiating 
control rod (ICR) and responding control rod (RCR) that are placed in the graphite "Layer H". 

The high-fidelity modeling of MGEP has been validated by the comparison of simulated results 
with the experimental data, which is presented in the Figure 9 with two control rods being fully 
placed out of the pile. The simulation of OpenMC has been performed with 3.0x108 particles, in 
order to ensure that the tallied neutron fluxes have no bigger than 1% statistical uncertainty. The 
mesh size of the flux tallies for these four layers of interest is 2.5 cm, and a total of 90 nodes are 
adopted. The resulting OpenMC output tallies are a 90x4 matrix, which is the input matrix for the 
surrogate model. 
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Figure 9: Comparison of simulation results with experimental data without control rod 
insertion. Lines are simulation results; data points are experimental data. 

3.2 Artificial Neural Network 
The open-source artificial neural network (ANN) machine learning code toolkit – NPSN  [8], [14] 
has been adopted and modified to build a neural network surrogate and regression model. NPSN 
provides an abstract path for creating models for multidimensional regression of neutron flux 
distribution based on control rod position(s) for any type of nuclear reactor. The flow chart for the 
process is shown in Figure 10. 

Two neural networks ("NN-S" and "NN-CR") are integrated into the virtual control system. The 
surrogate model ("NN-S") generates simulated detectors signals in the graphite pile channels of 
interest; and the regression model ("NN-CR") predicts the perturbed ICR position. 

These two neural network models in virtual control system can be expressed in the equations 
below. 
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where x is the position of control rod, φ denotes the detector signals reflecting neutron flux of the 
graphite pile, and M is the maximum number of measurement points. To quantify the performance 
of both neural network models, the relative difference in the surrogate model and the prediction 
error in regression model are calculated via the equations below respectively, 

 

where δNN-S is the relative difference of NN-S model, and δNN-CR represents the prediction error of 
control rod perturbation in the NN-CR model. 

 

 

Figure 10: Flow chart of the neural network 

3.3 Performance Optimization 
The prediction accuracy of this virtual control system is highly dependent on the detailed locations 
of three low-fidelity detectors and/or one high-fidelity detector. Results of numerical testing have 
demonstrated that the more detectors that are close to the control rods result in better prediction 
accuracy.  

This section elaborates the performance optimization by taking the high-fidelity detector with an 
active length of 100 cm, considering the 2.5 cm grid in the OpenMC model, this yields 40 points 



19 
 

of detector data that will be adopted as the input of NN-CR regression model. The same data set 
from the OpenMC simulation is used to train the NN-CR regression model, but the only exception 
is that greater than or equal to 40 points of detector information corresponds to mesh locations 
covering the high-fidelity detector location at the graphite layer of interest, and are utilized as the 
input to the NN-CR regression model. The optimized parameters used to train the neural network 
are shown in Table 2. 

Table 2: Optimized architecture parameters for the neural network regression model. 

 

The naming convention in Table 3 follows L[x]H[y]-z, in which H denotes high-fidelity detector; 
L means low-fidelity detectors; x is the number of H detectors, ranging from 0 to 1; y is the number 
of L detectors, ranging from 0 to 3; z is a unique permutation identifier, ranging from a to z. 
Similarly, the naming convention of detector locations can be expressed as (X, a~b~c), where X 
denotes graphite layer identifier, F, G, I or J; a is the starting index of detector location, ranging 
from 1 to 90 (total number of computational nodes in each graphite layer); b is the end index, 
ranging from 1 to 90 and equals to 1 if ignored; c is the interval of meshes from detector signals 
collection, ranging from 1 to 90 and equals to 1 if ignored.   

As listed in Table 3, ten cases are primarily selected to conduct the comparative study on the 
optimization of the NN-CR neural network. Case 1 represents three low-fidelity detectors in the I 
layer, which performs the best without any high-fidelity detectors. The good performance is 
because the neutron flux shape of I layer reflects the most impact of control rods movement in the 
H layer, and this is also the reason why all other cases apply D4 in the center of I layer. However, 
case 2 just adopts a high-fidelity detector in the center position. The cases starting from #3 to #10 
tabulate different combinations of low-fidelity and high-fidelity detectors. Cases 3, 4 and 5 take 
two low-fidelity in two ends positions of I layers, as the center position of I layers has been 
captured by the high-fidelity detector. Cases from 6 to 10 cover different combination of three 
low-fidelity detectors in I and J layers with different locations in I layers. Case 10 changes the one 
low-fidelity detector from center position to left-tilt position in order to capture the ICR control 
rod movement more accurately. 
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Table 3: Combination of different detectors in the regression model 

 

3.4 LabVIEW Design for the Virtual Control System 
The virtual control system is designed in the LabVIEW graphical programming language due to 
its advantage in the functional compatibility with various software, hardware, and operating 
systems. Figure 11 displays the front panel of this virtual control system, which contains three 
major components and a visualization display. The main components are the initiating control rod 
perturbation (ICR), responding control rod manipulation and feedback (RCR), detector signal 
generator and unknown control rod perturbation prediction. Two neural networks are introduced 
to realize the functionality behind the detector signal generator and control rod prediction. As 
mentioned above, NN-S and NN-CR are separately trained to support the detector signals 
generator and control rod prediction respectively, with the training data sets generated by high-
fidelity Monte Carlo neutron transport modeling and simulations. The predicted control rod 
position will be finally fed back to the responding control rod manipulation. 

 

Figure 11: LabVIEW front control panel for the virtual control system 
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A series of training data has been adopted to train the neural network NN-S and NN-CR, which 
covers 142 different permutation of ICR and RCR positions and are available in Appendix A.  

3.5 Regression Model Performance 
The overall performance of the virtual control system is mostly determined by the performance of 
NN-CR regression model. The accuracy of predicting the unknown ICR perturbation is calculated 
by the difference between the actual ICR position and the predicted position.  The testing results 
of all 10 permutations of detectors from Table 3 are presented in Figure 12. 

 

Figure 12: Performance of NN-CR regression model across different detector position/type 
permutations. 

The testing results indicates that Case 1, 2, and 3 do not have good performance to smoothly predict 
the ICR sine shaped perturbation, particularly in the case that the ICR is extremely close to the 
ends of the graphite layer. Note that RCR position is 50 cm for all testing cases. 

Figure 13 shows the detailed absolute difference of the prediction in all testing cases, which error 
lies within the range from approximately -15 cm to 10 cm. The results of case 2 and 3 are not 
acceptably accurate because of the scale of maximum error. Case 1 results are poor as the predicted 
ICR movement shape is not smooth. Furthermore, looking into the detailed maximum prediction 
error, case 5 performs the best and is analyzed further.  
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Figure 13: Performance of the virtual control system for the various cases across different 
times (i.e. ICR positions). 

As the current position of RCR might have an impact on the NN-CR prediction performance, the 
sensitivity analysis of case 5 is conducted among different RCR positions. The analysis result is 
shown in Figure 14, where less than 5 cm of the maximum error is observed in the extreme RCR 
positions (RCR=100 cm or RCR=10 cm). However, the other RCR positions have even better 
accuracy with errors ranging from -3 cm to 1 cm. The mean absolute error, maximum absolute 
error, and root mean square error are provided in Table 4 for all ten test cases. 

 

Figure 14: Optimized performance of unknown perturbation for case 5 for various RCR 
positions. 
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Table 4: Prediction error in the regression model for all cases 

 

The regression model was further optimized for case 5, and the optimized results are shown in 
Figure 15, where the unknown ICR perturbation is assumed has the triangle sine function shape 
with a period of 120 seconds. The full length of control rod range from -120 cm to zero is covered. 
As shown in the figure, the maximum prediction error is less than 2 cm. 

 

Figure 15: Optimized prediction results of the virtual control system. 
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4 MGEP Autonomous Control Demonstration 
This section presents the experimental demonstration of the autonomous control system (ACS) 
designed for the MIT Graphite Exponential Pile (MGEP). The ACS was intended to autonomously 
respond to perturbations through linear actuation of control rods with neutron absorbers, which 
aims to keep the neutron flux profile symmetric after unknown control rods perturbations. An 
artificial neural network (ANN) was trained and used for decision making for the ACS. For the 
experimental demonstration, the real-world experiment was set up on the MGEP to demonstrate 
the functionality of ACS with integration of a Helium-3 (He-3) neutron detector and control rods 
including their moving devices. In the demonstration experiment, the perturbed flux profile was 
measured by the mobile Helium-3 neutron detector being placed in the desired graphite layer and 
scanning the length of the layer. The deep learning regression model was trained by the flux 
measurements taken before the demonstration. Finally, the prediction accuracy in the 
demonstration was presented and discussed to validate the viability of this autonomous control 
system for subcritical nuclear facility -- MGEP. 

4.1 Hardware Setup 

4.2 Hardware Operation 
High-fidelity numerical modeling and simulation is the first step to investigate the neutronic 
characteristics of the MGEP before developing the data-driven control system (DCS). Figure 3 
illustrates the front view of the MGEP, which is a graphite cube with 90 inches per side sitting on 
top of an underground graphite pedestal. A total of 1288 cylindrical fuel slugs are placed in 12 
layers of graphite blocks in the North-to-South direction. In addition, another 12 layers of graphite 
blocks with void channels in the center support the measuring channels for neutron flux detector 
or control rod insertion in the east-to-west direction, namely layer "A" to layer "L" as shown in 
Figure 3.   

As shown in Figure 3, a Pu-Be or Cf-252 source can be placed in the underground pedestal as an 
external neutron source to increase the neutron flux to an easily measurable level. As the neutron 
fluxes of interest are referenced relative to the graphite layers spanning from "F", "G", "I" and "J", 
neutron detectors are placed in these channels. The exact location of neutron detectors is adjusted 
to achieve optimal performance of neural network prediction models used in the control system. 
The previous work shown in previous sections indicates layer "I" has the most sensitive response 
corresponding to linear actuation of the dual control rods, which are placed in the layer "H". One 
of the dual control rods is used as the initiating control rod (ICR), which travels on the east half of 
the channel and perturbs the neutron flux. Another one is taken as the responding control rod 
(RCR), which covers the west half of the channel and restores the symmetric neutron flux. The 
moving range of ICR (right end of the active length) varies from -75.1 cm to -7.7 cm and the range 
of RCR (left end of the active length) changes from 7.7 cm to 75.1 cm. Correspondingly, the 
detector movable range (center of the active length) in layer "I" can be from -87.5 cm to 92.5 cm. 
The coordinate system adopted in this work is also displayed in Figure 3, with the origin located 
in the center of the graphite layer and the positive x-axis points along the east-to-west direction. 

The framework of the experimental demonstration is shown in Figure 16. In this system, the 
regression model is extended from digital twin-based control system that was developed first as a 
proof of concept and discussed in previous sections. The exception for the experimental 
demonstration is that the training data sets are collected from a flux measuring experiment instead 
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of Monte Carlo simulation results. The kernel of this framework is LabVIEW with different 
interfaces, which drives TCP/IP interface for Helium-3 neutron detector control and data 
collection, and Python interface to execute NPSN-based neural network prediction, and also the 
LINX interface to control the control rods moving system and neutron detector moving system via 
the Arduino micro-controller board and the stepper motors. 

 

Figure 16: Experiment setup i) Overview of MGEP and two rails; ii) zoom-in view of two 
rails from west side; iii) two control rods; iv) He-3 detector and electronics device). 

This work aims to develop a DCS for the MGEP to autonomously respond to unknown neutron 
flux perturbations. We introduce δS as the relative difference of the neutron flux profile along the 
x-axis between and left half and right half, which can be referred to as the figure of merit that is 
able to quantify the symmetry of flux profile, which can be expressed as follows, 

 

Where, 
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denote that flux integral under the left and right side of the flux profile respectively. The objective 
of this work is to minimize the δS by adopting the neural network regression model that correctly 
predicts the perturbed position of ICR, and automatically moving the RCR to a symmetric position. 

 

4.3 Integration and Demonstration 
The experimental data sets that are used to train neural network in the experimental demonstration 
are obtained from the He-3 neutron detector. The total of 144 permutation cases of dual control 
rods insertion, which is exactly the same with that generated for simulation data sets preparation. 
With the consideration of reducing measuring uncertainty to a significantly lower level (the 
measured background is approximately 25 counts per second), at least 60 seconds is required as 
the measuring time at each measuring location. Additionally, 15 cm is selected as the interval 
distance between two neighboring measuring locations, which lead to the measuring locations vary 
from 15 cm to 195 cm with the increment of 15 cm. To better determine the impact of different 
measuring time at each location on the neural network prediction performance, another experiment 
with 120 seconds as the measuring time is conducted to form the so-called high-resolution data 
set, whereas the former data set with 60 seconds of measuring time is named low-resolution data 
set.   

Figure 17 presents the front panel (lower subplot) and logic panel (upper subplot) of the 
experimental autonomous control system, which is designed in LabVIEW programming language 
and then integrated with neutron detectors via TCP/IP interface. Labview also interfaces with an 
Arduino, or Raspberry Pi board based micro-controller to control the stepper motors. The stepper 
motors control the movement of detector for the neutron flux measurement, the dual control rods 
-- ICR and RCR. Note that both the detector and dual control rods are installed on the railings in 
the pile with movable stands and belts that have been driven by stepper motors. Different from the 
digital twin-based control system, this system directly collects the flux profile of the MGEP via 
detector moving system and detector signals post-processing. Moreover, the regression model is 
still adopted to provide real-time control rod prediction functionality. However, the regression 
model is previously trained by experimental data sets. The prediction error is used to assess the 
performance of this integrated experimental demonstration. 

Figure 18 shows the logic for the control system response to a perturbation. Essentially the control 
system utilizes the neural network to estimate the position of the ICR and moves the RCR to the 
symmetric positions, it then reevaluates the estimated position and moves the RCR again until 
either it is moving less than the delta (typically 0.5 cm) or the max iteration counter has been 
reached (typically 3). Table 2 shows the optimized neural network parameters as used to train the 
regression model. 
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Figure 17: Logic framework (upper) and LabVIEW front panel (lower) of experimental 
autonomous control system. 
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Figure 18: Flow chart of data-driven control system for moving MGEP control rods 

4.4 Artificial Neural Network and Regression Model 
The open-source artificial neural network (ANN) machine learning code toolkit – NPSN [8], [14]  
has been adopted and modified to build the neural network regression model. NPSN provides an 
abstracted path to creating models for multidimensional regression of neutron flux distribution 
based on control rod position(s) for any type of nuclear facility including critical and subcritical 
ones. The flow chart can be referred to the NPSN layout figure in the reference paper [8]. In 
general, a deep learning neural network model typically has one input layer, multiple intermediate 
dense layers, and one output layer. Note that users are required to match the dimension of input 
and output layer according to the detailed data sets. Take the regression model developed in this 
work as an example, the input is a one-dimensional array with the size of 14, which covers the 
single value for the RCR position and another 13 flux values at 13 measuring locations. The neural 
network regression model outputs only one single value that is the ICR's position. 

The deep neural network regression model is built to determine the unknown control rod position 
prediction by analyzing the neutron flux profile measured from a Helium-3 neutron detector. The 
ANN model is instantiated and trained by NPSN. This package adopts Tensorflow [17]  and Keras 
[18] to provide the high-level application programming interface (API).  NPSN was initially 
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utilized to develop a neural network surrogate model for the MIT reactor (MITR) [19][20], but 
then was modified to model the MGEP [8]. 

The neural network regression models can be expressed as below, 

 

where x is the position of control rod, φ denotes the detector signals reflecting neutron flux of the 
graphite pile, and M is the maximum number of experimental data points. To quantify the model's 
performance, the prediction error in the regression model is calculated as below, 

 

where δNN represents the prediction error of control rod perturbation in the regression model. 

4.5 Demonstration Results and Discussion 
An example of the operation of the autonomous control system and the resulting neutron flux is 
shown in Figure 19, where the ICR is moved to a location unknown to the autonomous control 
system of -25.0 cm. The detector then scans the pile in 15 cm increments to determine the neutron 
flux profile. The ANN then predicts the location of the ICR, in this case it predicts a position of -
26.3 cm, an error of 1.3 cm. The system then moves the RCR to the symmetric position of 26.3 
cm to bring the flux back to a symmetric profile. Figure 19 shows the response of the neutron flux 
as the RCR is moved to the symmetric position. 

The aggregate demonstration results and the associated error for all cases is presented in Figure 
20, where the upper subplot illustrates the prediction performance with regression model that is 
trained by low-resolution experimental data set, and the lower subplot expresses the prediction 
error with regression model trained by high-resolution date set. The maximum prediction error 
was significantly reduced from 7 cm to 4 cm. The experimental results for 13 cases are shown in 
Table 5, which shows the value of the flux asymmetry after the system responds to the ICR 
movement. The ICR and RCR positions are given in cm utilizing the coordinate system shown in 
Figure 3. The initial δS is from the movement of the ICR, the final δS is after the RCR responds, 
and the reference δS is from the ANN trained on the digital twin high fidelity neutronic simulations. 

Figure 21 shows the results from the highly trained optimized digital twin as discussed in previous 
sections. The results on this case perform even better than the experimental cases as there are no 
experimental complications of position, material, or geometric uncertainties.  
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Figure 19: Top graphic shows the flux profile changing as the RCR responds to the 
symmetric position shown in the lower graphic. 
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Figure 20: Prediction results of experimental control system with low-resolution time data 
(upper) and high-resolution time data (lower). 
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Table 5: Integral experimental demonstration of control system performance 

 

 

Figure 21: Predication performance of regression model trained by high-fidelity simulation 
data 
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5 Fault Tolerance 
Prior work discussed previously performed on the MGEP trained neural networks using simulated 
(modeling) data and detector data to predict ICR positions given a flux profile and the known 
position of the RCR. The quality of the data acquired by the sensors is essential to the accuracy of 
the neural networks trained on those data sets. Consequently, fault tolerance methods must be 
implemented to verify sensor functioning and make sure any outliers are properly handled. 

Fault tolerance is the method in which faults are appropriately identified and resolved to ensure 
that the system continues to function as intended. Previous research in the field has led to several 
proposed methods of outlier detection. In both [21] and [22], principal component analysis (PCA) 
is suggested as a method of creating a data driven model, while in [23] anomalies are detected 
through Hotelling’s T2 test and interquartile range (IQR). In [24], Banerjee et al. creates an 
artificial neural network (ANN) to detect sensor faults through a combination of sigmoid activation 
functions, mean squared error (MSE) loss and regression analysis. 

Other dimensionality reduction techniques (like PCA) include t-Distributed Stochastic Neighbor 
Embedding (t-SNE), which utilizes Gaussian and Student t-distributions to create clusters of 
related data [25]. Certain neural networks used for classification, like convolutional neural 
networks (CNN), tend to process images and areas particularly well [26], while others, like k-
Nearest Neighbors (kNN), focus on the distance between an unclassified point and surrounding, 
labeled data to classify it [27]. Thus, t-SNE data can be visualized for CNN application and fed 
directly into a kNN algorithm. This work develops outlier detection methods to identify sensor 
failures in the MGEP through the combination of several of the aforementioned techniques and 
evaluates the accuracy of each procedure. 

5.1 Methods 

5.1.1 Fault Insertions 
Our datasets are initially arranged in a 144 x 14 matrix, with the rows indicating the trial number, 
columns 1 through 13 containing the flux reading at a particular position, and column 14 containing 
the RCR position value for that trial.  

Faulty data is generated by calculating the standard deviation of each detector data column and 
ensuring that the faults created are at least 2 deviations (σ) away from the mean (μ). These faults 
are then randomly placed within their corresponding detector data columns. The faults are only 
generated for the flux readings, and not the RCR values. 

5.1.2 PCA and IQR 
For the PCA and IQR method, the RCR values have been dropped, resulting in a starting matrix 
of dimensions 144 x 13 for both the modeling and detector datasets. 

PCA first reduces a matrix from d+1 dimensions to d by removing labels associated with the 
dataset. When PCA is applied to the MGEP modeling dataset, the dimensions stay the same as the 
labels have not been included. Next, the mean of each data column is calculated and the covariance 
matrix of the dataset is computed through the equation, 
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𝑖𝑖=1

 

 
where 𝑥𝑥 and 𝑦𝑦 represent the variables and 𝑥𝑥,� 𝑦𝑦� represent the mean. The covariance results in a 
square matrix of 𝑑𝑑 𝑏𝑏𝑏𝑏 𝑑𝑑 dimensions whose eigenvectors and eigenvalues can be calculated. The 
final dimensions produced by PCA are 𝑑𝑑 𝑏𝑏𝑏𝑏 𝑘𝑘, where 𝑘𝑘 is the number of important features used 
to explain the variance in the data, selected in descending order from the greatest eigenvalue. For 
the MGEP, three features have been selected. After extracting the features from the modeling 
dataset and transforming the faulty detector data, outlier experiments are removed through 
Hotelling’s T2 test 

 
𝑇𝑇2 = 𝑛𝑛(𝑥̅𝑥 − 𝜇𝜇0)𝑆𝑆−1(𝑥̅𝑥 − 𝜇𝜇0) 

 
where 𝑛𝑛 random samples are selected to create a covariance matrix 𝑆𝑆, 𝑥̅𝑥 is the mean of the sample, 
and 𝜇𝜇0 is the mean of the original data. When 𝑥̅𝑥  ≈  𝜇𝜇0, the 𝑇𝑇2 value approaches 0. By choosing 
an appropriate threshold for 𝑇𝑇2, outlier experiments can be selected and removed to refine the 
dataset and IQR can be applied to find the data point(s) responsible for the high 𝑇𝑇2 value. IQR 
works by finding the range where the middle 50% of the data lies, which is then multiplied by 
some constant 𝑐𝑐 and added the first (𝑄𝑄1) and third (𝑄𝑄3) quartiles to create the upper and lower 
bounds of accepted values: 

 

𝑄𝑄3 − 𝑄𝑄1 =  𝐼𝐼𝐼𝐼𝐼𝐼 
 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 =  𝑄𝑄3 + 𝑐𝑐 ∗ 𝐼𝐼𝐼𝐼𝐼𝐼 
 

𝐵𝐵𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 =  𝑄𝑄1 − 𝑐𝑐 ∗ 𝐼𝐼𝐼𝐼𝐼𝐼. 
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Figure 22: PCA IQR data plotted along the three principle components. 

 

Through testing, the value of 𝑐𝑐 has been set to 1.6 for the MGEP. An example of the data is shown 
in Figure 22.  The plot is generated after using PCA on modeling data (gray dots) to extract 
principal components (PC) and applying them to the detector data (red dots). The green arrows are 
each PC, with the amount of variance in the data that they account for. The axes represent the PCs 
in a cartesian coordinate system. Because the modeling and detector data have the same general 
distribution, applying the PCs from the modeling data onto the detector data will result in similar 
shapes, but the value differences will shift their locations, as shown in Figure 22. Points that do 
not match the distribution (outliers) will be significantly affected by the modeling PCs and will be 
located far from the main cluster. Outlier rows detected by PCA through Hotelling’s T2 test are 
indicated by black diamonds. These outlier rows will then be removed from the dataset and IQR 
is applied to find the point that is the source of the error. 

 

5.1.3 T-SNE and kNN 
 

The next method explored is the combination of t-SNE and kNN. Like PCA, t-SNE also reduces 
data dimensionality, however, it does so through a combination of distributions. The data is 
reduced from an array of size 𝑎𝑎 𝑥𝑥 𝑏𝑏 to 𝑎𝑎 𝑥𝑥 𝑛𝑛, where 𝑛𝑛 is a specified number of components. 

First, a Gaussian distribution is applied to an 𝑎𝑎 𝑥𝑥 𝑏𝑏 array 
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𝑝𝑝𝑗𝑗|𝑖𝑖 =
exp (

−||𝑥𝑥𝑖𝑖−𝑥𝑥𝑗𝑗||2
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2 )

∑ exp (
−||𝑥𝑥𝑖𝑖−𝑥𝑥𝑘𝑘||2

2𝜎𝜎𝑖𝑖
2 )𝑘𝑘≠𝑖𝑖

. 

Where all of the possible pair-wise interactions are considered. To set the appropriate 𝜎𝜎 value, 
perplexity is used, which is defined as:  

 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑝𝑝𝑖𝑖) = 2−∑ 𝑝𝑝𝑗𝑗|𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙2(𝑝𝑝𝑗𝑗|𝑖𝑖)𝑖𝑖 . 

 
The results are then symmetrized through 

 
𝑝𝑝𝑖𝑖𝑖𝑖 =  

𝑝𝑝𝑗𝑗|𝑖𝑖+𝑝𝑝𝑖𝑖|𝑗𝑗
2

. 
 

Additionally, Student’s t-distribution is applied to the original dataset 

 

𝑞𝑞𝑖𝑖𝑖𝑖 =  
(1 + ||𝑦𝑦𝑖𝑖−𝑦𝑦𝑗𝑗||2)−1

∑ (1 + ||𝑦𝑦𝑘𝑘−𝑦𝑦𝑙𝑙||2)−1𝑘𝑘≠𝑙𝑙
. 

 
Next, Kullback-Leibler (KL) divergence is applied to make the distributions as similar as possible. 

 
𝐶𝐶 =  ∑ 𝑝𝑝𝑖𝑖𝑗𝑗𝑙𝑙𝑙𝑙𝑙𝑙

𝑝𝑝𝑖𝑖𝑖𝑖
𝑞𝑞𝑖𝑖𝑖𝑖

𝑖𝑖𝑖𝑖 . 

 
The gradient of KL divergence is then used as a cost function to minimize the differences between 
the probability distributions.  

Afterwards, KNN is applied. First, a distance metric is selected, which has been set to the Euclidian 
metric for the MGEP. Next, each point 𝑥𝑥 is assigned to a class with the largest probability based 
on its location 

 
𝑃𝑃(𝑦𝑦 = 𝑗𝑗|𝑋𝑋 = 𝑥𝑥) =  1

𝐾𝐾
∑ 𝐼𝐼(𝑦𝑦(𝑗𝑗) = 𝑗𝑗)𝑖𝑖 ∈ 𝐴𝐴 . 

 
The 𝐾𝐾-value impacts the number of neighbors considered when classifying 𝑥𝑥. For larger values, 
more data is considered and generally makes it more tolerant to outliers. Smaller 𝐾𝐾 will focus more 
on the local distribution, and looks at a smaller region surrounding the point. 

 



37 
 

 
 
Figure 23: T-SNE data plotted along principle components. 

An example of data after being transformed by T-SNE data from the MGEP is shown in Figure 
23. In t-SNE, components are extracted to find relationships between data points. Points that are 
more related to each other tend to be clustered together.  

For Figure 23, each of the columns of data (144 rows x 13 columns) have been clustered into 
groups. The axes indicate the components extracted from applying t-SNE. 

The image shows that the data points are most related to the column they belong to. Columns 3 
through 7 contain similar data distributions, while some others are loosely related, and columns 0, 
10, 11 and 12 are mostly or completely independent. This indicates that when searching for 
outliers, focusing on the relation of a data point to other column members may be more effective 
than comparing it to other points along its row. 

 Because convolutional neural networks (CNN) are able to work with area detection, these 
images can be fed into a CNN to extract important area features that will classify a column as inlier 
or outlier. The data arrays for each column can also be used in k-Nearest Neighbors (KNN), which 
will determine if a point is an inlier or outlier based on how far it is from nearby data points 
(neighbors). 



38 
 

5.1.4 T-SNE and CNN 
Images generated using the t-SNE dataset can be fed into a convolutional neural network (CNN). 
They work by taking labels and images of specified dimensions, and then using a kernel to scan 
the image and extract important features. These features are then used to classify images. 

Several layers include hyperparameters that can be tuned to increase the classification accuracy. 
Padding layers can expand the image matrix data by adding zeros, and pooling layers can extract 
the most relevant features while discarding noise. At the end of a CNN, a classification layer is 
added to categorize the images. 

For the MGEP, the column data images are classified into acceptable and outlier categories. 

 
 
Figure 24: CNN Feature plot. 

In Figure 24 GradCAM, a gradient weighted class activation algorithm, has been applied on a 
CNN trained with t-SNE data to verify that it is identifying the correct features to label data as 
inliers or outliers. The top section shows the original t-SNE column data graph, containing a clear 
outlier (the lone point towards the bottom). The middle section shows the feature map, while the 
bottom overlays the feature map on the original image. 

 The image shown above shows that the CNN is successfully learning that the data points 
are the features that are important for accurate classification (highlighted in yellow) while 
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generally disregarding the white space of the graph (indicated by the red). This ensures that the 
CNN model is functioning as intended. 

5.2 Fault Tolerance Results 
In all methods, the accuracy is measured as the number of correct fault points removed divided by 
the number of faults inserted. 

     
 

 

TABLE I. Method Accuracy 

Method of Evaluating 
Fault 

Fault Detection 
Accuracy 

PCA + IQR 95% 

T-SNE + KNN 68.5% 

T-SNE + CNN 75% 

 

 
The PCA + IQR method resulted in a 95% accuracy, while t-SNE + KNN and t-SNE + CNN had 
a 68.5% and 75% accuracy, respectively (summarized in Table 1). 

6 Conclusions 
A virtual control system has been developed to theoretically verify the practicality of the technical 
road map. It has three major components to build the framework of the virtual control system with 
LabVIEW graphical programming language with Python interfaces, including control rod 
manipulation, detector signal generator and control rod prediction and feedback. The neural 
networks behind detector signal generator and control rod prediction modules are trained by the 
machine learning algorithms with the training data sets generated by high-fidelity Monte Carlo 
neutron transport modeling and simulation. It has proven that the virtual control system has the 
control rod prediction error less than 2 cm. 

The experimental autonomous control system was designed, fabricated, and installed in the MGEP. 
The system has been integrated using three major components including the helium-3 neutron 
detector with its data collection device, neural network-based control rod prediction module, and 
the control rods manipulation device. 

The autonomous control system is mainly designed in LabVIEW with Python and the necessary 
hardware integration of the He-3 neutron detector, the Arduino/Raspberry Pi, and stepper motor 
control of the control rods and neutron detector. The neural network behind the control rod 
prediction module is trained by the measured neutron flux data from the detectors via the calibrated 
in-pile experiment with various control rods perturbations. The experimental demonstration 
showed the prediction error of experimental autonomous control system is less than 4.0 cm. The 
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limitation of further reduction of prediction error is likely inherent to the experimental setup based 
on the accuracy of the equipment. One way to improve this further would be to use a He-3 detector 
with higher spatial resolution as well as control rods with higher worth to increase the sensitivity 
of the system. 

This work actively demonstrates an innovative DCS that can be viable in a subcritical nuclear 
facility by adopting a neural network-based machine learning algorithm, micro-controller driven 
hardware, and a LabVIEW based system integration. It introduces experimental data sets in neural 
network training and integrates them in the control system final demonstration, which mitigates 
the deficiency in many DCS systems that only adopt modeling and simulation data sets. However, 
there are some limitations in this work, such as the total time spent in moving the detector and 
taking measurements is high due to the low count rates in a subcritical pile. This drawback can be 
mitigated by using a neutron detector with spatial sensitivity, the use of multiple detectors, or 
testing on a system with a higher neutron flux. Also, the flux profile is not the objective function, 
but the ICR position is predicted, and then the RCR is moved to the symmetric location which also 
restores flux symmetry based on the geometric symmetry of the pile. Using the flux profile as the 
objective function could be more of an analog to a critical system and explored in future work. 

Fault tolerance of the system was also investigated and several different techniques were employed 
to determine the best methods for optimal fault tolerance of the system. Faults were introduced 
with an erroneous signal that is outside 2 standard deviations of the data scatter for that point. 
PCA+IRQ methods were able to identify the outlier with 95% accuracy, the modeling data was 
then used to fill in the data hole. These results show that Fault tolerance methods can be employed 
to improve the function of an DCS. 

Overall the project successfully implemented an autonomous control system both using a digital 
twin of the MGEP and a physical DCS on the actual MGEP. The digital control system was able 
to predict the location of an unknown movement of a control rod (ICR) and move another control 
rod (RCR) to a symmetric position. The symmetry of the flux was shown to be within just a little 
over 1% after the RCR response. Fault tolerance methods were also employed to demonstrate the 
robustness of the system to faulty data inputs. 
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8 Appendix A: Permutations of the ICR and RCR positions used for 
training. 
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