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Abstract

This report describes the development of a crystal plasticity finite element method (CPFEM)
model for the multiaxial creep rupture of Grade 91 steel. The report demonstrates that core
blocks in heat pipe reactor designs will see significantly different stress states than those
typically found in conventional advanced reactor components where structures can often
be represented as thin-walled pressure vessels. Current design practice uses effective stress
measures calibrated to biaxial creep test data to account for the effect of stress multiaxiality
on rupture life. Because these models rely on biaxial data they may not be accurate for
the truly 3D, triaxial states found in heat pipe microreactor core blocks. A physically-based
model, like the CPFEM model developed here, may be able to more accurately represent
creep rupture under triaxial stresses when compared to conventional, empirical methods.
This report describes the development, implementation, and validation of such a model
and then applies the model to predict the effect of stress triaxiality on rupture in Grade
91 steel. The model results are used to assess the effective stress measures currently used
in high temperature design codes and makes specific recommendations on improving these
effective stresses to better account for the effect of 3D stress states on rupture in Grade
91. The validation and then implementation of these recommendations in design codes and
standards could lead to safer, more effective heat pipe microreactor core block designs.
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1 Introduction

1.1 Overview

The heat pipe microreactor concept involves the use of a solid core block to encapsulate the
nuclear fuel and the passive extraction of heat from the core block to the energy conversion
system with advanced heat pipes. This results in a compact reactor configuration with mini-
mal moving parts and enables inherent power regulation, autonomous operation, and inherit
load following It is well suited for delivering economical and sustainable power to remote
locations. Current vendor heat pipe microreactor design targets process heat applications
up to 600C and 10-year reactor core life.

The core block is a key component of the heat pipe microreactor design. It integrates the
functions of reactor vessel, core structural components, and fuel cladding of traditional Gen
IV advanced reactor designs into a single structure. The current reference material for the
core block construction is Type 316 stainless steel. The identification of additional candidate
materials for the core block construction would expand the design envelope for higher safety
margins and for exploration of more innovative and economical designs.

Grade 91 is a ferritic-martensitic steel that has a lower thermal expansion coefficient and
a higher heat conductivity as compared with Type 316 stainless steel, resulting in lower
thermal stresses developed in the core block during reactor operations. It also has higher
resistance to radiation induced swelling. It does not work harden as much and hence has
less challenging machining issues than Type 316 stainless steel.

The core block design involves thousands of holes for the placement of fuel pellets and the
insertion of heat pipes. Multiaxial stresses are generated in the ligaments between the holes.
Thus it is important to understand the influence of stress multiaxiality on creep rupture life
and creep ductility of Grade 91 for the safe, efficient design of the Grade 91 core block.

Typically the design of high temperature components like core blocks is controlled by
time-dependent creep properties. For constant loads oftentimes structures are designed to
prevent the initiation of creep damage by keeping the stress in the structure below a creep
rupture strength. This creep rupture strength expresses the time-dependent relation between
the applied stress and temperature and the time-to-failure. Essentially, the creep rupture
strength σr for temperature T and time t is the stress that will cause rupture in time t if the
material is held at stress σr and temperature T .

Nearly universally design creep rupture strengths are developed by correlating and extrap-
olating uniaxial creep rupture test data. Figure 1.1 shows a typical uniaxial creep specimen.
In these types of tests the stress applied to the specimen gauge is uniaxial – there is only one
non-zero stress component. Typical design practice is to take data from these types of tests,
for example rupture stresses, correlate and extrapolate that data using empirical models,
for example the Larson-Miller approach used by the ASME Code [30], and develop design
rupture stresses from this extrapolation.

Of course even standard high temperature reactor components seldom experience uniaxial
loading. Instead, stress states in structural components are generally multiaxial, i.e. stresses
occur along more than one direction. Multiaxial stress states can be parameterized using a
decomposition of a generic stress tensor σ into principal components. Mathematically, this
is an eigen decomposition of the stress tensor into a sum of scalar principal components,
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Figure 1.1: Standard uniaxial creep specimen. The smooth transition to the gauge region in
the center of the specimen ensures the stress state in the critical region is uniaxial. Photo
used with permission from Y. Wang, Oak Ridge National Laboratory.

called principal stresses, acting along orthogonal principal directions:

σ =
3∑
i=1

σi (ni ⊗ ni) . (1.1)

The principal stresses σi are typically ranked from highest to lowest, i.e. σ1 ≥ σ2 ≥ σ3 with
σ1 called the maximum principal stress. These principal stresses can be used to categorize
loading conditions. Loading with σ2 = σ3 = 0 is uniaxial, loading with σ3 = 0 is biaxial, and
loading with all three nonzero principal stresses is triaxial. Both biaxial and triaxial stress
states can be categorized as multiaxial. This report will labels stress states where σ1 = σ2
and σ3 = 0 equal biaxial and stress states where σ1 = σ2 = σ3 equal triaxial to distinguish
these special cases from the general biaxial and triaxial conditions.

High temperature design methods use an effective stress, here notated σe, to account for
stress multiaxiality. In essence, a particular effective stress measure is a correlation between
a multiaxial stress state, often characterized by combinations of the three principal stresses
to ensure the correlation is appropriately invariant under arbitrary rotations, to the uniaxial
rupture stress. The key idea of an effective stress is to find a mapping from multiaxial stresses
to a uniaxial stress so that a material under a multiaxial loading mapping to the effective
stress σe fails in the same time as a creep test loaded uniaxially with that same stress σe.
That is, an effective stress is a way of relating multiaxial stress states to the creep rupture
correlation devised using uniaxial creep test data.

In practice, effective stress measures are devised from a small amount of multiaxial creep
test data. Commonly only two types of multiaxial creep tests are available: pressurized tubes
[25] (Fig. 1.2), sometimes under a combination of pressure and axial stress, and tension-
torsion tests [13, 21, 48]. Both of these test types provide only biaxial load. Effective stress
measures are devised and calibrated using this biaxial creep rupture data.

For standard high temperature reactor designs only having biaxial test data is not a
significant drawback. Typically, many components in standard high temperature designs can
be approximated as thin-walled pressure vessels with nearly biaxial stress states. Of course
some components will experience triaxial stresses, nozzles being the classical example, but
at least historically the majority of the design can be performed using biaxial stress analysis.

ANL-ART-171 2
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Figure 1.2: Typical pressurized creep specimen tested to a failure. The thin-walled capped
tube is pressurized which induces a biaxial stress state in tubular shell. The principal stresses
are, approximately, σ1 = 2σ2 with σ3 = 0. Figure reproduced from [52].

Core blocks of heat pipe microreactors cannot be reasonably approximated as pressure
vessels under biaxial load. Core block structures will experience highly multiaxial stress
states and so an accurate, effective method for multiaxial creep design will be crucial to
the success of core block designs. In line with standard design practice, this report then
attempts to find an accurate effective stress relation for the design of components experienc-
ing multiaxial loading. This report focuses on the ferritic-martensitic Grade 91 steel and a
temperature of T = 600◦ C.

However, there is no triaxial experimental test data to evaluate existing effective stress
relations or develop new, more accurate expressions. Instead, this report uses a physically-
based crystal plasticity finite element method (CPFEM) model for creep rupture in Grade 91
steel to explore effective stress relations. This CPFEM model has been described in previous
DOE reports and journal publications focusing on the development of the model, the model
results for uniaxial loading [34, 38], and the application of the model to multiaxial loading
in the context of notch strengthening and weakening effects [36, 37]. These results described
in these previous publications demonstrate that the Grade 91 CPFEM model accurately
recovers the uniaxial creep test data for temperatures up to 600◦ C and argues that the
physically-based model can more reliably extend short-term creep test data to longer design
lives, compared to empirical extrapolation methods. The work on notch effects demonstrates
the model makes reasonable predictions for multiaxial creep, though as described here only
limited validation data for these conditions is available.

Notch effects are a simple way to characterize the effect of stress multiaxiality on creep
rupture. A notched creep test and an equivalent standard specimen are tested under the
same conditions to see which fails first – the notched or unnotched specimen. If the notched
specimen fails first the material is notch weakening for that particular combination of load,
temperature, and notch geometry whereas if the smooth specimen fails first the material is
notch strengthening. The notch generates stress multiaxiality and so this type of test crudely
assess the effect of multiaxial stress states on rupture. The challenge with notched creep tests
is that the stress state in the critical region is unknown, uncontrolled, and changes with time.
Therefore, these type of tests are unsuitable for devising an effective stress measure to use
in design.

ANL-ART-171 3
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This report describes a method for using the physically-based CPFEM model for creep
in Grade 91 to test and develop effective stress measures for the design of core blocks in heat
pipe microreactors. Unlike previous work on notch sensitivity the goal here is to provide
designers a quantifiable way to design structures experiencing triaxial stresses against creep
rupture by developing an accurate effective stress measure. The key point is that while
triaxial creep tests are impossible, or at least have not yet been developed, the physically
based model can be loaded in arbitrary stress states. The model can therefore be used to
generate synthetic test data for use in developing or assessing effective stresses under realistic
triaxial stress states.

1.2 Brief survey of multiaxial creep

This section gives a brief overview of previous work on representing creep failure under
multiaxial load. Chapter 5 discusses a set of particular effective stresses commonly used in
design and evaluated in this report, this section provides a general overview of multiaxial
effects.

The earliest literature on multiaxiality effects on creep and creep rupture focus on notch
effects [8, 11, 15, 45]. Some of the results described in these early 1950s papers date back
to World War II era research on aerospace materials. For a more detailed summary see
[36]. Most of the work at this early data is experimental and qualitative, trying to under-
stand which characteristics (stress state, notch geometry, material parameters) affect notch
sensitivity.

Hayhurst, Leckie, and colleagues initiated more quantitative work on the effect of multi-
axiality through their development of continuum damage mechanics for modeling and pre-
dicting creep failure in components (c.f. [19, 20, 22, 31]). There some difference between their
work on continuum damage mechanics and traditional engineering design approaches, but
both methods account for multiaxial effects in a similar manner through the use of a scalar
effective stress. This report considers two particular effective stresses originally proposed by
the Hayhurst-Leckie school in Chapter 5.

Huddleston [24–26] developed a second widely-used family of effective stresses, referred
to here as the Huddleston model. His method of correlating multiaxial stresses to uniaxial
creep rupture data is currently in use in Section III, Division 5 of the ASME Boiler and
Pressure Vessel Code covering the design of high temperature reactor components [2].

Both of the aforementioned methods for correlating multiaxial creep to uniaxial data are
more-or-less empirical and based on direct biaxial creep testing. More modern approaches
attempt to tie the problem of creep failure to void growth in ductile materials. The CPFEM
interface model described in Chapter 4 falls into this school of thought, albeit in the context
of a micromechanical model. Macroscale models tend to follow the work of Rice and Tracey
[42], Cocks and Ashby [9], Gurson [18], Needleman [39], and Tvergaard [50]. [54] contains a
good summary of recent developments along these lines.

Finally, mention should be made of the current British approach exemplified in the R5
standard for fitness for service evaluations at elevated temperatures [14]. While the standard
does retain an allowable stress approach using the Huddleston stress to relate multiaxial
stress states back to a scalar allowable stress, the main approach used in R5 is ductility
exhaustion. Whereas up until now this report discusses a creep rupture stress and the
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concept of an effective stress relating multiaxial to uniaxial rupture failures, the ductility
exhaustion method hypothesizes that creep ductility is the key parameter determining failure
[17]. Essentially the method ties creep failure to a critical amount of accumulated inelastic
strain (the creep ductility), which depends on temperature and the strain rate of the applied
loading. Applying the ductility exhaustion approach to multiaxial loading then requires an
effective strain measure which relates a multiaxial state of strain back to the axial strain,
correlated to a creep ductility database populated from the results of uniaxial creep tests.
The R5 standard uses an effective strain developed by Spindler [47], which however in the
end refers to the stress state of the material rather than to the strains directly. While the
ductility exhaustion approach is a valid alternative to stress-time formulations, this report
describes creep failure in terms of stresses to maintain compatibility with the standard U.S.
high temperature design methods described in the ASME Boiler and Pressure Vessel Code.

1.3 Organization of this report

Chapter 2 describes a finite element analysis of a representative core block in a heat pipe
microreactor design in order to quantify the triaxial stress states found in the web of core
blocks. The goal of this chapter is to assess the range of triaxial stress states that may be
found in future core block microreactors and compare these stress states to those found in
more typical high temperature reactor designs where the stresses can often be approximated
as biaxial. Chapters 3 and 4 describe improvements made to the CPFEM model since the
last report on this topic ([37]). Chapter 3 covers the single crystal constitutive model and
gives a general overview of CPFEM modeling while Chapter 4 covers the interface-cohesive
model used to represent creep damage and failure on grain boundaries (GBs). The goal
of these improvements is to enable the model to reach realistic failure strains and rupture
lives. Previous incarnations of the model were limited by numerical issues to times only
slightly past the initiation of tertiary creep. The new, improved model can continue all the
way to complete material failure. A secondary objective was to transfer the model from the
WARP3D finite element code [29] to the MOOSE framework [16] developed and maintained
by Idaho National Laboratory to facilitate future extensions of the modeling framework to
multiphysics simulations.

Chapter 5 describes the main results of this report. This chapter describes a modeling
framework used to quantify the effect of triaxial stresses on the creep life of Grade 91, assesses
several different effective stresses, and recommends an effective stress for the design of core
blocks in heat pipe microreactors and other elevated temperature structural components
that experience highly-triaxial stresses. Finally, Chapter 6 summarizes the key conclusions
of this work and discusses the implications on high temperature design in general.
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2 Assessing the multiaxial stress state in a core block design

To demonstrate the complex stress states that will occur in core blocks of heat pipe microre-
actors this chapter summarizes the results of a preliminary inelastic stress analysis of a core
block under a constant thermal load. Full details of the preliminary analysis are provided
in an analysis report attached as Appendix A. The material analyzed here is 316H stainless
steel, but character of the stress state, i.e. biaxial versus triaxial, would not greatly change
for a Grade 91 design.

The design geometry and loading conditions were extracted from [33, 49]. The loading
considered was a single heat up to normal operating power with approximate thermal bound-
ary conditions for the fuel pin heat generation and heat pipe heat removal. The reactor was
brought to the operating power and held in that condition for a design life of 100,000 hours.
The analysis did not consider pressure on the fuel or heat pipe holes as the primary stresses
induced by these pressures are expected to be small compared to the thermal stresses. More
importantly, the analysis did not consider the effect of load cycling. In an actual microreac-
tor design, creep-fatigue damage by cycling caused by reactor power down/power up events
will control the design life of the core block. Each cycle will reset the creep stress relaxation
history of a point to the high stresses typical of the initial elastic stress in the current cal-
culation, therefore greatly increasing damage in the material when compared to the current
steady-state analysis. The “load and hold” load history applied in the current analysis is
therefore not representative of actual reactor service loads. However, the primary purpose
of the analysis is to estimate the stress states experienced by core block webs in a typical
core block design.

Figure 2.1 shows the finite element mesh used in the calculation. This represents a 60◦

sector of a full core block design. Thermal boundary conditions in the hole regions represent
either the heat generation of an active fuel pin or the heat removal of a functional heat pipe.

The analysis uses a simple inelastic constitutive model to represent the creep deformation
and corresponding stress redistribution in the 316H core block.

The mechanical, and to a lesser degree, thermal boundary conditions on the sides of the
block section are not well modeled in the current analysis and so results from the region of
the core block near these boundaries should be ignored. Additionally, global bending stresses

Figure 2.1: Finite element mesh used in the calculation.
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Figure 2.2: Representative temperature field near the center of the modeled region.

introduced by core block supports were not included in the analysis.
Figure 2.2 shows a representative temperature distribution away from the edges of the

modeled region. A strong thermal gradient developed along the web between heat pipes,
inducing thermal stresses in the core block. Creep will cause these thermal stresses to relax as
time progresses, though transient cycles, not modeled here, would cause the thermal stresses
to reset to higher values as each transient occurs.

Figure 2.3 shows the triaxiality factor

TF =
σ1 + σ2 + σ3√

(σ1−σ2)2+(σ2−σ3)2+(σ3−σ1)2
2

(2.1)

where σ1, σ2, and σ3 are the principal stresses, near the start of the hold period, where the
triaxiality tends to be the highest. Moderate triaxial stresses develop near the heat pipes in
the center of the modeled sector, with values of triaxiality increasing towards the edges of the
model. Ignoring the region immediately adjacent to the model edges, where the inaccurate
boundary conditions significantly affect the stress field, the maximum value of triaxiality
is greater than 2.0. With the definition of triaxiality given in Eq. 2.1 a value of TF = 1
indicates uniaxial tension loading. Therefore, the core block analysis indicates a moderately
high degree of triaxiality might be expected. For reference, the triaxiality factor for a biaxial,
thin walled, capped pressure vessel away from discontinuities is

√
3 ≈ 1.73. Additionally,

the stress states are substantially more multiaxial and vary in the plane of the core block
significantly more than a standard thin-walled pressure vessel.

The triaxial, 3D stress states in the core block do not typically occur in standard reactor
components that can be modeled as thin-walled pressure vessels. As such, high temperature
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Figure 2.3: Representative triaxiality factors (Eq. 2.1) near the center of the modeled region.
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structural design practice may need to be improved to accurately represent creep and creep-
fatigue damage under highly triaxial conditions.
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3 Improvements to the grain bulk model

As described in the introduction, the CPFEM model for creep deformation and rupture of
Grade 91 was ported to the MOOSE [16] finite element framework in order to improve the
numerics of the model so that it can capture true rupture strains and times and to provide
future extensibility. In order to accomplish the transition, ANL implemented three additions
to the MOOSE framework:

1. Developed an interface-cohesive model and ported the GB damage model into the new
MOOSE interface framework (discussed in Chapter 4).

2. Implemented a new grain bulk single crystal constitutive model framework in NEML
[3], which already has an interface to MOOSE (discussed here).

3. Improved the MOOSE large deformation tensor mechanics module to achieve better
convergence for CPFEM simulations (discussed here).

This chapter also provides a brief overview on how CPFEM simulations work and the
advantages and disadvantages of the technique. For a more complete description of the
particular CPFEM model for creep used in this work see the previous research reports
[34, 37].

3.1 Brief overview of CPFEM

The crystal plasticity finite element method is a way to simulate the mesoscale deforma-
tion processes causing inelastic deformation and damage in metal polycrystals [44]. The
methodology represents these deformation and damage mechanisms at the mesoscale where
the response of the material can still reasonably be represented with a continuum field the-
ory. However, the underlying constitutive equations represent microscale deformation and
damage mechanisms, rather than empirical descriptions of deformation and damage as are
often used in macroscale engineering simulations.

Fundamentally, CPFEM calculations solve the same field equations as a standard large
deformation engineering solid mechanics calculation. The fundamental field equation is the
balance of linear momentum in the deformed configuration, here presented in a quasistatic
form without body forces:

∇x · σ =0 on Ω (3.1)

σ · n =t̂ on ∂Ωn (3.2)

u =û on ∂Ωe (3.3)

where σ is the Cauchy stress, Ω represents the deformed domain, n is the outward pointing
surface normal, ∂Ωn is the part of the boundary of Ω over which natural boundary condi-
tions are applied, t̂ are the imposed tractions, u is the unknown displacement field to be
determined, ∂Ωe is the part of the boundary of Ω over which essential boundary conditions
are applied, and û are the imposed displacements. ∇x denotes the divergence in the current
coordinates, over the domain Ω
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The unknown field in this formulation is u but only stress appears in the equilibrium
equation. The closure relation is a function mapping a displacement (actually the gradient
of the displacement) at a material point to the corresponding stress. This functional relation
has two parts: (1) kinematics defining the appropriate measure of deformation and the
map between the material frame of reference and the current configuration used in the
equilibrium calculation and (2) constitutive relations relating this deformation measure to
the stress. The formulation described here, and its corresponding implementation in NEML,
uses modular constitutive relations, so that any single crystal constitutive model can be
easily implemented in the kinematic framework described below. Because NEML already
ties into MOOSE, providing the solid mechanics constitutive relations in a simulation, these
single crystal constitutive models can easily be used in MOOSE without additional effort.

Note that in this description of the problem a single crystal CPFEM constitutive model
is exactly analogous to a standard material model embedded in a solid mechanics finite
element solver. The only difference is the choice of kinematic framework for describing
deformation and the interpretation of the constitutive model. For a standard macroscale
finite element calculation the model, often empirically, describes the macroscale deformation
of the material, tactically homogenizing the response of many single crystal grains for a
metal, whereas for CPFEM the constitutive model describes the response of a single crystal.
This is fundamentally both the strength and the weakness of CPFEM approaches. It means
that a CPFEM model can be implemented in any standard finite element framework simply
by embedding a particular material model. However, it also means that the resolution of the
CPFEM model cannot descend to scales on which the fundamental assumption of describing
deformation with a continuous field equation breaks down.

To give the reader some idea of what CPFEM calculations look like, Figure 3.1 visualizes
the initial mesh and the initial grain orientations (a), the final grain orientations (b), and
a result field (c), here the von Mises effective stress, from a sample calculation. As the fig-
ure demonstrates, a fully-resolved CPFEM simulation discretizes each initially single crystal
grain with multiple finite elements. The method is then capable of subgrain resolution, with
the limits on scale discussed above. This means in later calculations the CPFEM simula-
tions of creep are capable of resolving cavitation on critical grain boundaries, accounting for
the deformation and stress in neighboring subgrain regions. Figure 3.1(a) demonstrates the
initialization of CPFEM simulations. In addition to internal variables describing microstruc-
tural evolution and damage, discussed below, a CPFEM model tracks the crystallographic
orientation of each material point. Typically, unless grain misorientation data is available,
each grain will have a single crystal orientation, as shown in (a). The crystal orientation
of each point is essentially an internal variable for the constitutive model, evolved with an
evolution equation discussed below. Figure 3.1(b) shows that CPFEM calculations track the
evolution of grain orientation throughout the simulation. Grains both reorient as a whole and
develop misorientation, starting from the initially perfect single crystal orientation. CPFEM
calculations can then be used to model the evolution of texture in a material. Finally, Figure
3.1(c) visualizes the von Mises effective stress over the microstructure at an arbitrary point
in the deformation history. CPFEM makes subgrain resolution stress and deformation in-
formation available to compare to experimental measurements and to drive the evolution of
internal variables representing the development of the microstructure and the initiation and
growth of damage. Chapters 4 and 5 describe how to use a CPFEM framework to model
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Figure 3.1: Example CPFEM analysis of a cube of FCC material undergoing 50% rolling
strain. (a) Initial grain orientations and the problem mesh. (b) Final grain orientations. (c)
von Mises stress field from the final simulation step.

the evolution of creep-induced cavitation on GBs and use a complete CPFEM simulation to
model creep rupture in Grade 91 steel.

3.2 Model implemented in NEML/MOOSE

3.2.1 Kinematics

Fundamentally, crystal plasticity kinematics derives from the multiplicative decomposition
of the deformation gradient into elastic and plastic components

F = I +∇Xu = Fp · Fe (3.4)

where ∇X denotes the divergence in the reference coordinates over the domain Ω0. The
subsequent derivation, starting from this fundamental hypothesis, was then developed by
Rice [43], Hill and Rice [23], and Asaro and Rice [5] into the standard crystal plasticity
kinematics. An early work by Asaro [4] provides a good general overview.

Expanding the multiplicative decomposition to find the spatial velocity gradient yields

l = ḞF−1 = ḞeFe−1 + FeḞpFp−1Fe−1 (3.5)

Label
l̄p = ḞpFp−1 (3.6)

ANL-ART-171 13



Initial study of notch sensitivity of Grade 91 using mechanisms motivated crystal plasticity finite

element method
September 2019

Figure 3.2: Description of the frames of reference in the standard crystal plasticity kinemat-
ics.

which reduces Eq. 3.5 to
l = ḞeFe−1 + Fel̄pFe−1 (3.7)

The fundamental constitutive assumption of crystal plasticity is that

l̄p =

nslip∑
i=1

γ̇i
(
Q0 · di ⊗ ni ·QT

0

)
(3.8)

where γ̇i is the slip rate along the slip system defined by direction di and normal ni, often
taken to be a function of the stress σ and some set of internal variable describing the mi-
crostructure of the material, h (see below). The rotation Q0 takes the initial reference frame
to the crystal frame of reference. This rotation is what would be measured in a classical
diffraction experiment. Figure 3.2 shows the configurations implied by this decomposition
and constitutive assumption. Note that the lattice frame of reference is attached by the con-
stant rotation QT

0 to the unloaded intermediate frame Ωp, not to the original reference frame
Ω0. Asaro and coworkers justify this assumption, which might be called the fundamental
assumption of crystal plasticity kinematics, by noting that plastic slip does not disturb the
atomic lattice.

Starting from this derivation, which is common to nearly all theories of single crystal
plasticity, the implementation in NEML makes several simplifying assumptions. These as-
sumptions are detailed in [35]. The first assumption is that the elastic stretch, but not the
elastic rotation, is small, represented as

Fe = (I + ε) Re (3.9)

ANL-ART-171 14



Initial study of notch sensitivity of Grade 91 using mechanisms motivated crystal plasticity finite

element method
September 2019

so that
ε� I (3.10)

and
(I + ε)−1 ≈ I− ε. (3.11)

This reduces Eq. 3.7 to

l = ε̇− ε̇ε+ Ωe −Ωeε+ εΩe − εΩeε+ lp − lpε+ εlp − εlpε (3.12)

with
Ωe = ṘeReT (3.13)

and
lp = Rel̄pR

eT . (3.14)

Note from Fig. 3.2 and the preceding derivation that the rotation from the current
configuration back to the crystal configuration (i.e. what would be measured in a diffraction
experiment after deformation) is

Q = ReQ0 (3.15)

and therefore
Q̇QT = ṘeQ0Q

T
0 ReT = ṘeReT = Ωe. (3.16)

Substituting back into 3.12 produces

l = ε̇− ε̇ε+ Ωe −Ωeε+ εΩe + lp − lpε+ εlp. (3.17)

Expanding this expression into symmetric and skew parts and dropping terms that are
quadratic in ε and mixed terms like εε̇ on the basis that the elastic deformation is small
produces

d =
1

2

(
l + lT

)
= ε̇+ dp + ε (Ωe + wp)− (Ωe + wp) ε (3.18)

w =
1

2

(
l− lT

)
= Ωe + wp + εdp − dpε. (3.19)

Denote
Ω? = Ωe + wp (3.20)

and make the hypoelastic assumption that

σ̇ = C : ε̇. (3.21)

Apply this definition and assumption to Eq. 3.18 and solving for the rate of Cauchy stress
gives

σ̇ = C : (d− dp − S : σ ·Ω? + Ω? · S : σ) (3.22)

where S = C−1.
Rearranging Eq. 3.19 to solve for Ωe gives

Ωe = w −wp − εdp + dpε (3.23)
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A time integration of Eq. 3.22 provides an evolution equation for σ. A similar time
integration of Eq. 3.23 provides an evolution equation for the crystal orientation Q. To
form a complete, solvable system of ordinary differential equations these two equations must
be supplemented by the constitutive model for γ̇i and the evolution equations for any ac-
companying internal variables describing the material microstructure. The implementation
in NEML uses a coupled, backward Euler integration to update the stress and the inter-
nal history variables. After successfully updating these variables the implementation then
separately updates the crystal orientations, uncoupled to the stress update, using an Euler
exponential form to ensure Q remains in the special orthogonal group.

3.2.2 Constitutive models

The single crystal constitutive model framework embedded in NEML defines modular con-
stitutive models so that new models can be easily added for testing and development. Fun-
damentally, a NEML single crystal model provides the slip rate

γ̇i (σ,h) (3.24)

as a function of the stress σ and some set of internal variables h. Additionally then the
model must also provide the evolution equations for these internal variables, i.e.

ḣ (σ,h) . (3.25)

While users are free to implement slip rate models in this generic form, the implementa-
tion provides a more conventional interface (i.e. a “Schmid” material) with the form

γ̇i (τi, τ̄i (h)) (3.26)

where τi is the resolved shear on slip system i, i.e.

τi = σ :
(
Redi ⊗ niR

eT
)

(3.27)

and τ̄i is the slip system strength, defined as a map from the generic set of history variables
h to the strength τ̄i.

While this description is abstract, this definition covers the vast majority of single crystal
constitutive models described in the literature. As an example consider the Voce model using
a single strength to represent all systems in the crystal. This model has a single history
variable τ̂ described by the evolution equation

˙̄τ = δ (τsat − τ̄)
∑
|γ̇i| (3.28)

with δ and τsat parameters. The map between the slip system strengths and this internal
variable is just the identity, i.e.

τ̄i = τ̂ . (3.29)

These expressions, combined with the standard power law model for the slip rate

γ̇i = γ̇
(0)
i

τi
τ̄i

∣∣∣∣τiτ̄i
∣∣∣∣n−1 (3.30)
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Figure 3.3: Validation test applying 100% rolling deformation to an FCC polycrystal with an
initially random texture. For each column of figures the top figure shows the initial texture
and the bottom figure shows the texture after deformation.

with γ̇
(0)
i a parameter, describe a complete single crystal constitutive law. This is the model

used in the subsequent simulations of creep in Grade 91. While the Voce hardening model
is empirical it can be given a physical interpretation, as described in [28].

In addition to the mathematical implementation of these equations and associated deriva-
tives, integration, and solver routines, the NEML crystal framework provides helper routines
for defining lattices based on crystal symmetry groups, postprocessing, and visualizing re-
sults of CPFEM calculations. The models can be used in MOOSE just like standard NEML
constitutive models, taking advantage of the existing connection between NEML and the
MOOSE framework originally developed for modeling macroscale inelasticity in engineering
scale component simulations. In addition to the CPFEM interface to finite element solvers,
NEML contains python drivers that can be used to simulate homogenized polycrystals. Cur-
rently the only homogenization option is the Taylor model.

3.2.3 Validation

A common test for a crystal plasticity model is to check that it can reproduce the standard
FCC rolling texture. Figure 3.3 plots 〈111〉, 〈110〉, and 〈100〉 pole figures for an FCC
polycrystal before and after 100% rolling strain (i.e. 100% plane strain compression). The
simulation uses the NEML Taylor model homogenization to simulate the response of a 200
grain polycrystal. The grain orientations are initially random and the slip strength is given
by the Voce/power law slip system model described in the previous subsection.

The figure shows that the crystal model reproduces the expected FCC rolling texture.
This test integrates several features of the constitutive model — slip system deformation,
hardening evolution, and the rotation update — and so serves as an excellent validation test
for the framework as a whole.
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3.3 Modifications to MOOSE for large deformations

In addition to implementing a single crystal constitutive model some corrections to the
MOOSE solid mechanics module (called tensor mechanics) were needed to achieve good
convergence in large, parallel CPFEM simulations. The current baseline version of MOOSE
does not correctly implement the exact algorithmic tangent for large deformations simula-
tions, meaning these simulations do not achieve optimal, quadratic convergence when using
Newton’s method to solve the nonlinear force balance equation. As crystal plasticity cal-
culations make little sense except in a large deformation framework, this limitation means
the CPFEM simulations take many more steps to converge or fail to convergence entirely,
requiring much more compute and wall time to complete a particular calculation. Note
that MOOSE by default uses preconditioned Jacobian-free Newton-Krylov methods to solve
nonlinear balance equations, where having the exact algorithmic tangent is less important.
However, these PJFNK methods have a reduced convergence rate than Newton’s methods
to begin with and there is no advantage to applying PJFNK solvers, compared to Newton’s
method, for single-physics problems running on a few thousand parallel processes.

Therefore, we corrected the errors in the algorithmic tangent by implementing a new
kernel for the linear momentum balance equation. Currently, this new kernel is on a side
branch of MOOSE (https://github.com/Argonne-National-Laboratory/deer), but we
hope to merge it into baseline MOOSE in the future.
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4 Implementation and improvements of the grain boundary cavitation
model

4.1 Small-strain cohesive zone framework in MOOSE

The tensor mechanics module available in MOOSE is formulated to use displacements as
variables and forces as work conjugates. The cohesive zone model (CZM) that has been
implemented in MOOSE utilizes a small-deformation discontinuous Galerkin approach, re-
quires the use of a traction-separation law of the form T = f(∆u), and does not require the
explicit addition of cohesive elements [37].

The implemented CZM utilizes a non-monolithic mesh to allow for a displacement jump
∆u at the interface and adds additional surface quadrature points on one side of the interface
to compute the traction T and store state variables. The displacement jump between two
initially coincident points is defined as ∆u := u−−u+, where superscripts + and − identify
the positive and negative interface surfaces.

In general, a body subject to external forces must satisfy force equilibrium and angular
momentum balance. For small-deformations the interface area A and the interface normal
n are assumed to be constant throughout the deformation and equilibrium is imposed on
the initial mesh configuration. From a mechanistic perspective the interface surfaces are
coincidental therefore automatically satisfying the angular momentum balance and only
required to enforce equilibrium equation 4.1.

P+ = P− (4.1)

The force acting over an area A on an interface can be expressed as:

P =

∫
A

TdA (4.2)

and therefore the strong form of the equilibrium equation can be rewritten as∫
A+

T+dA+ =

∫
A−

T−dA− (4.3)

For small-deformations the areas on both sides are equal, i.e. dA+ = dA−, therefore equation
4.3 is satisfied only if the traction on both side are equal, e.g. T+ = T−. In finite element
methods, equilibrium is weakly enforced and the weak form of equation 4.3 can be obtained
by multiplying the argument of the integrals by the appropriate test functions Ψ:∫

A

TΨ+dA =

∫
A

TΨ−dA (4.4)

The left hand side of equation 4.4 is imposed as an additional residual contribution to the
nodes belonging to the positive interface while the right hand side is imposed on the nodes
belonging to the negative interface.
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Figure 4.1: Schematic representing the geometrical quantities used in the grain boundary
cavitation model and their physical meaning. a: void half radius, b: void-to-void half dis-
tance, and Ψ: cavity half tip angle.

4.2 Implementation and improvement of the grain boundary cavitation model

Since last year’s report [37], we focused on implementing and improving the grain boundary
cavitation model described in Nassif et al. [38] in MOOSE. This model provides a traction
separation law usable in any CZM approach and describes the void growth and nucleation
via rate equations. The model assumes that surface diffusion on the void surface is rapid
enough so that the voids maintain spherical-cap shapes with a half tip angle Ψ (see Figure
4.1). The cavity growth and nucleation process are described in terms of two geometrical
variables a and b, which represent the average cavity half radius and the average half spacing,
respectively. The ratio between a and b is closely related to the GB porosity and is a direct
measure of the interface damage. When a = b cavities coalesce and the interface is broken.
The interface opening rate δ̇N is therefore constitutively linked to the cavity volumetric
growth rate via a and b.

The model in Nassif et al. [38] utilizes the following rate equations to describe the interface
opening, cavity growth and cavity nucleation:

δ̇N =
V̇

πb2
(4.5)

ȧ =
V̇

4πh(Ψ)a2
with a ∈ [a0, b] (4.6)

ḃ = −πb3FN
(
〈TN〉
Σ0

)γ
ε̇Ceq active if

(
〈TN〉
Σ0

)β
εCeq ≥

NI

FN
with b ≥ bsat (4.7)

where V̇ is the cavity volumetric growth rate, h (Eq. 4.17) is a function of the cavity half tip
angle, FN is a constant affecting the nucleation rate, Σ0 is a stress normalization factor, NI is
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the initial cavity number area density, a0 is the initial cavity radius and bsat is the minimum
allowed half cavity spacing. The value of bsat is computed in terms of the parameter Nmax,
which represents the maximum allowed cavity number density. Note that the cavity half
spacing b is directly related to the cavity density N by equation 4.8. Usually, the cavity
nucleation rate equation is presented in terms N , however in this document we will use
the cavity half spacing b instead of N to better expose the relationship between the varius
equations and to limit the number of variables.

N =
1

πb2
(4.8)

Experimental results show that different mechanisms are responsible for cavity nucleation.
In [12] it was reported that cavity nucleation is a continuous process primarily driven by the
creep strain rate of grains adjacent to the interface. Lim [32] studied the contribution of
grain boundary sliding to cavity nucleation and found that pure sliding does not contribute
significantly to cavity nucleation and suggested that before a cavity can start growing a
certain creep damage should be accumulated in adjacent grains. Wu and Sandstrom [53]
studied the parameters governing the cavity nucleation process both experimentally and
through modeling. They found that in most cases the cavity density is proportional to the
creep strain. The grain boundary cavity growth model previously implemented in WARP3D
and now in MOOSE was conceived by Needleman and Rice [40] and Sham and Needleman
[46] and extended to a wide range of traixilities by (Van der Giessen et al. [51]). Van der
Giessen et al. [51] utilized axisymetric finite element simulations to compute the growth rate
of a single cavity under different loading conditions and generated a simplified model to
represent the FE results. It should be emphasized that, as in WARP3D, the finite element
implementation will not track individual cavities but will describe their mean evolution at
each interface quadrature point. Therefore quantities such as a and b should be interpreted
as the average behavior of a collection of cavities living on the area of influence of an interface
material point.

The cavity growth model describes the the evolution of the cavity half radius a in terms
of a volumetric growth rate that is expressed in terms of cavity half spacing b, an average
cavity size a, the normal traction TN , and a few non local variable expressing the state of
neighboring grains.

The cavity volumetric growth rate V̇ has two terms, one to describe the initial cavity
growth process V̇L and one to describe void-void in-plane interaction, V̇H . It then assumes
the cavity nucleation rate to be the largest in magnitude between V̇L and V̇H (Eq. 4.9).
Both volumetric cavity growth rate formulations include a diffusion related term (Eqs. 4.10
and 4.13), which is identified by the superscript D, and a triaxial stress related term (Eqs.
4.12 and 4.15), which is identified by the superscript triax. The stress triaxility is defined as
the ratio between a mean stress and an equivalent stress. For the grain boundary cavitation
model we will use the hydrostatic stress, sH , and the Von Mises equivalent stress sVM to
compute the stress triaxility ratio. For interface calculations an average value of hydrostatic
stress, von Mises stress and creep rate will be used. Such average nonlocal quantities are

defined as: sH = 0.5(s+H + s−H), sVM = 0.5(s+VM + s−VM) and ε̇Ceq =
√

2
3
ε̇Ci,j ε̇

C
i,j. In the previous

equations sH = tr(σ)/3, sVM =
√

3
2
σi,jσi,j and ε̇C = (0.5(ε̇C,+ + ε̇C,−)).
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V̇ =

V̇L = V̇ D
L + V̇ triax

L if |V̇L| ≥ |V̇H |

V̇H = V̇ D
H + V̇ triax

H if |V̇H | > |V̇L|
(4.9)

The triaxial contributions to void growth are further subdivided into two regimes, ac-
cording to the triaxiality stress ratio.

V̇ D
L = 8πD

TN
q (fL)

(4.10)

with fL = max

(
a2

(a+ 1.5L)2
,
a2

b2

)
, L =

(
DσVM
ε̇Ceq

)1

3 (4.11)

V̇ triax
L =


2ε̇Ceqa

3πh(Ψ)m

{
αn

∣∣∣∣ σHσVM
∣∣∣∣+ βn(m)

}n
if

∣∣∣∣ σHσVM
∣∣∣∣ ≥ 1

2ε̇Ceqa
3πh(Ψ) {αn + βn(m)}n σH

σVM
if

∣∣∣∣ σHσVM
∣∣∣∣ < 1

(4.12)

where n is the cavity growth exponent, q is a function accelerating the degradation of the
interface as function of the porosity, h, is a geometrical quantity, m is the sign of the
hydrostatic stress, β and αn are constants depending on n and m. All the above quantities
are defined in Equations 4.16 through 4.21.

V̇ D
H = 8πD

TN
q (fH)

(4.13)

with fH =

(
a2

b2

)
(4.14)

V̇ triax
h =



2ε̇Ceqa
3πh(Ψ)m


[
αn

∣∣∣∣ σHσVM
∣∣∣∣+

m

n

]
(

1− 0.87
a

b

) 3
n


n

if

∣∣∣∣ σHσVM
∣∣∣∣ ≥ 1

2ε̇Ceqa
3πh(Ψ)


[
αn +

m

n

]
(

1− 0.87
a

b

) 3
n


n

σH
σVM

if

∣∣∣∣ σHσVM
∣∣∣∣ < 1

(4.15)
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q (f) = 2 log

(
1

f

)
− (1− f) (3− f) (4.16)

h (Ψ) =

(
1

1− cos (Ψ)
− cos (Ψ)

2

)
1

sin (Ψ)
(4.17)

m = sign (σH) (4.18)

β (m) =
(n− 1) [n+ g (m)]

n2
(4.19)

g (m) =


log (3)− 2

3
if m = 1

2π

9
√

3
if m = −1

0 if m = 0

(4.20)

αn =
3

2n
(4.21)

A traction separation law also requires the in-plane traction to be defined in 3D. In
general the two in-plane directions are chosen arbitrarily. The only requirement is the two
directions be orthogonal. This choice implies isotropic in-plane behavior of the interface.
For brevity we will name the transverse directions as 1 and 2 and by utilizing the notation
1/2 it is implied that such relationship applies for both transverse directions. During creep
it assumed that grain boundary sliding occurs. The model implements the following sliding
equations:

TS1/2
= ηSfS

(a
b

)
δ̇1/2 with fS

(a
b

)
=

1 if
a

b
≤ 0.5

2
(
−a
b

+ 1
)

if
a

b
> 0.5

(4.22)

In summary, the model has the following characteristics:

• The model assumes continuous cavity nucleation and growth.

• The traction separation law is purely viscous.

• Nucleation (Eq. 4.7) can occur only under tension and if the nucleation criterion is
met. If both criteria are met the cavity nucleation rate is proportional to the equivalent
creep rate ε̇Ceq and to T γN .

• Newly nucleated cavities are assumed to instantly reach the a value of already present
cavities.
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• The shape of the cavity is fixed by the angle Ψ, thus assuming that the time required
for a cavity to reach its quasi-equilibrium shape is much smaller than the time required
to grow or nucleate.

• The cavity half spacing b can only decrease (N can only increase).

• The cavity volume can increase or decrease depending on the sign of TN and σH ,
however the lower bound of the cavity radius is limited to a = a0 by the fact that
cavities nucleate from precipitates segregated at grain boundaries.

• Cavity growth and nucleation are not affected by sliding.

4.2.1 Model improvements

4.2.1.1 Visco-elastic grain boundary response

One of the goals of this project is to eventually simulate the creep-fatigue response of Grade
91. Utilizing a purely viscous traction-separation law might cause numerical issues because
equations are stiff when load changes happen. Examples of this behavior are: the initial load
ramp for a creep simulation, load reversal experienced during fatigue loading or interface
failure. Another consideration is that materials, even under high temperature conditions,
still exhibit elastic behavior when load changes happens in a short timeframe. We already
experienced numerical issues in WARP3D simulations when ramping the load from the initial
condition to the imposed creep stress, and the only solution was to utilize a very small time
step when increasing the load. Therefore we decided to improve the model by utilizing a
Maxwell model for the traction separation law. In a purely viscous model traction are only
related to the velocity as:

TN = ηδ̇N (4.23)

The Maxwell model can be seen as a spring in series with a dashpot. The dashpot is
responsible for stress relaxation and the spring is responsible for responding to instantaneous
load changes. The rate equation for a Maxwell model representing an interface can be written
as:

ṪN =

(
δ̇N +

TN
η

)
C (4.24)

where C is the interface stiffness. By comparing Equations 4.23 and 4.5 one obtains

TN
η

=
V̇

πb2
(4.25)

and substituting in equation 4.24 the traction rate equation becomes:

ṪN =

(
δ̇N +

V̇ (TN)

πb2

)
C with C =

E
(

1− a

b

)
W

(4.26)
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Figure 4.2: a): schematic representing the location of cavities on the grain boundary plane
assuming axial symmetry; b) Schematic depicting the axisymmetric model used to identify
the interface thickness, including the imposed boundary conditions.

where E is the interface Young modulus, and W is the interface thickness. The a/b term
in the stiffness equation includes the effect of damage by reducing the stiffness as damage
progresses. Note that in case of isotropic elasticity the young modulus E is equal to the
value in one of the grains. In what follows Eq. 4.26 will replace Eq. 4.5

In a finite element framework the element stiffness is directly linked to the element size.
For a cohesive element the geometrical thickness in the opening direction is usually zero at
the beginning. However, in most cases one is required to assign a fictitious element thickness
that should be representative of the region of material in which the fracture process takes
place. In this case the interface thickness can be computed using axisymmetric, elastic finite
element simulations by identifying the distance from the grain boundary plane after which
the stress field becomes constant (see Fig. 4.2 a). To obtain a conservative estimate of the
interface thickness W , we performed a set of simulations for different a/b ratios ranging from
0.1 to 0.98. For all the simulations the same displacement uz = 0.1b has been applied on
the top surface while an equal value radial displacement boundary condition was imposed
on the right surface. The equal value boundary condition was selected to not over or under
constrain the system. Figure 4.2.b is a schematic depicting the applied boundary conditions.

The criterion selected is the distance from the grain boundary plane for which the gradient
of the stress becomes small, specifically ∇σVM < 0.1 . Results show that the stress gradient
is below the selected threshold after a distance L = 3b (see Fig. 4.3). The interface thickness
was therefore selected as W = 2L = 6b to include both sides. Furthermore, the value of b
continuously decreases up to an imposed minimum value b = bsat = 1√

πNmax
, where Nmax is

a model parameter representing the maximum allowed cavity density. To be conservative,
we selected the largest obtainable interface stiffness, i.e. W = 6bsat.
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Figure 4.3: Contour plot depicting the von Mises stress gradient field for different a/b ratios.
For a cavity with a/b = 0.98 the stress becomes constant after a distance 3b from the grain
boundary plane.
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It should be noted that linking the interface thickness to the model parameter Nmax

introduces a length scale in the problem and this approach is justified if the resulting interface
thickness W is smaller than the characteristic bulk element length. In general the interface
element stiffness should be larger than the that of bulk elements to not allow separation
before damage is initiated. This assumption will be verified later in this chapter.

The Maxwell model has also been used for the shear traction:

ṪS,1/2 =

(
δ̇S,1/2 +

TS,1/2
ηSfS

)
6bsat

G
(
1− a

b

) with fS

(a
b

)
=

1 if
a

b
=< 0.5

2
(
−a
b

+ 1
)

if
a

b
=≥ 0.5

(4.27)

where G is the interface shear modulus, which is, for isotropic elasticity, G = E
2(1+ν)

, with ν
being the Poisson’s ratio of the neighboring grain.

Another change made to the model was to modify the activation condition of the nucle-
ation rate equation (see Eq. 4.7) from being always required to be a one time check:

ḃ = −πb3FN
(
〈TN〉
Σ0

)γ
ε̇Ceq active if

(
〈TN〉
Σ0

)β ∫ T

0

|ε̇Ceq|dt ≥
NI

FN
once (4.28)

Physically this interpretation suggests that when the threshold value is achieved cavities
can continuously nucleate under any positive normal traction. With this modification we
argue that after enough creep strain has been accumulated the cavity nucleation process is
continuous. This is still in agreement with nucleation threshold value proposed by Lim [32],
however it is in contrast with the previous interpretation where the nucleation process could
be intermittent if the normal traction drops significantly. This approach makes the problem
numerically smoother. In practice, the two different activation strategies are almost equiv-
alent for creep loading conditions because the opening traction exhibits a smooth behavior
with limited variation in time Messner et al. [34], and therefore once the threshold is met
nucleation will continue in both cases. However, different responses could be possible under
creep fatigue loading conditions where the applied load can vary drastically in a short time.

4.2.1.2 Modeling interface failure

Interface failure ideally happens when the damage D = a/b = 1. However, reaching a value
of D = 1 is impossible, especially for load controlled simulations, as it results in numerical
instability. A practical approach to solve this issue is to choose a critical damage value
Dcr < 1, after which damage stops evolving leaving an arbitrarily small residual stiffness to
improve the numerical stability of the simulations. However, if Dcr is not close enough to 1.0
(e.g. 1−Dcr < 10−3) the residual interface stiffness would still be high enough to influence
the simulation results. On the other hand reaching a value of D = 0.999 requires a large
computational effort and might trigger global time steps reduction too often, thus making
CPFEM creep simulations almost unfeasible from a computational cost perspective. We
therefore adopted a strategy to avoid excessive time step reductions while still neutralizing
the interface stiffness.
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Our strategy relies on four checks to determine if an interface material point is ready to
be marked as failed :

• The extrapolated time required to achieve an interface damage D = 1 is smaller than
a fixed critical time tcr. The time to complete failure is computed by extrapolating the
current damage rate as: tresidual life = 1−D

Ḋ
, where both D and Ḋ are evaluated after a

converged solution has been achieved. The interface material point is marked as failed
if tresidual life ≤ tcr. This check avoids triggering global timestep reduction because of
load redistribution issues or an excessive number of adaptive material substeps.

• The damage of an interface material point exceeds a critical value Dcr. A typical value
is Dcr = 0.95.

• The opening traction TN exceeds a critical value TN,cr. This check is necessary to
mark as failed elements during the last stages of the simulation to avoid excessive bulk
elements distortion. A typical value is TN,cr = 1400 MPa.

• A check for an unreasonable situation deriving from the fact that equations do not
allow for cavities to accumulate damage by changing shape and becoming oblate. This
check is is triggered if and only if the interface damage rate Ḋ > 0 and the normal trac-
tion TN < 0. Failure occurs when this condition is met and either: (i) the extrapolated
residual life is smaller than tcr OR (ii) during a time increment of size tcr the extrap-
olated traction would result in a negative value with a magnitude larger than TN,cr.
Condition (ii) is computed as ṪN tcr + TN < −|TN,cr|, where both the normal traction
and its rate are evaluated after convergence is achieved. The reason for including this
check will be further explained later in this chapter.

If any of the above occurs, the material point is marked as failed. The time at which
failure occurs tfail, the displacement jump vector at failure ∆ufail, and all the traction
component at at failure Tfail are recorded and set as constants for the rest of the simulation.
When a material point has been marked as failed an exponential decay relationship is used
to reduce the stiffness and bring the tractions to zero:

Ti = [(∆ui −∆ui,fail)Ci + Ti,failDF ] where: (4.29)

Ci = max

(
Ti,fail

∆ui,fail
DF,Cmin

)
(4.30)

DF = exp

(
− (t− tfail)

0.5tresidual life

)
(4.31)

where i is an index ranging from 1 to 3 identifying either the normal or one of the sliding
directions, Ci is the current stiffness of the interface, Cmin is the minimum allowed stiffness
(typical value C = 1MPam), and DF is an exponential decay factor applied to reduce both
the interface stiffness and traction at failure in a time frame ∆t = tresidual life.

This approach allows the interface to retain a small C = Cmin and prevents disconnected
domains, which are numerically unstable in implicit finite element frameworks. It skips
calculations for interface material residual lives smaller than tcr (typical value 50 h). In fact
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most of the calculation cost is related to the last portion of an element life. In general such
small residual lives can be neglected from an engineering perspective if a reasonable tcr is
selected. For instance even if the entire creep life is 1000 h selecting a tcr =50 h would still
only account for 5% of the entire creep life.

4.2.2 Numerical implementation

As in the WARP3D implementation, the bulk quantities required by the interface model,
such as σH , σVM , and ε̇Ceq are staggered. This means that at time step n + 1 the cavitation
models utilizes values computed at time step n. This also implies that the triaxial branch
for the cavity growth rate is decided at the beginning of the timestep.

The numerical implementation of the cavitation model ensures that simulations can pro-
ceed after the onset of tertiary creep and generate experimentally observed failure strains.
As noted above, the cavity volumetric growth rate equations have different branches which
are selected depending on the current material state. One of the main concerns in [34] was
that simulation were failing to achieve high strain rates. We believe this occurred because
of the discontinuous nature of the model due to the presence of hard max functions. These
discontinuous functions severely affect the convergence of the local implicit time integration.
Therefore, we substituted all the max functions with the so called smoothmax to obtain
a continuous system of equations. The smoothmax function implemented in the material
model is based on [10] and modified to automatically adjust its sharpness depending on
values of x and y:

smoothmax (x, y) = log

(
exp

(
fx

|x|+ |y|

)
+ exp

(
fy

|x|+ |y|

))
|x|+ |y|

f
(4.32)

where f is a scaling factor which governs the sharpness of the smoothmax. We found that
a value of f = 50 provides good results independently from the values of x and y. In the
implementation the smoothmax function was applied to equations 4.9, 4.11, and 4.28 and
simulations use a value of f = 50 (see Eq. 4.33). The rate equations used in the final
nonlinear system are shown in Eq. 4.33.

All the grain boundary cavitation model equations have been presented in terms of rates.
Some of the variables have physical constraints that are naturally specified in terms of
variable values and not rates. The physical constraints in the systems are:

• the new value of a for time step n+ 1 must be larger or equal to a0 and smaller than
bn+1: a0 ≤ an+1 ≤ bn+1.

• the new value of b for time step n + 1 must be smaller or equal to bn and larger than
bsat: b

n ≥ bn+1 ≥ bsat.

The lower bounds for the variables in the cavity growth equation are imposed by means of the
smoothmax function. The minimum value a is imposed by implementing smoothmax(a0, θ

M(ȧ)),
where θM(·) implies utilizing the θ −method (cfr. Eq. 4.35 ) to integrate the rate equation
(see also Eqs. 4.34). The smoothmax function is also used to replace the Macaulay brackets
in Eq. 4.28 with 〈TN〉 = smoothmax (1e− 3, TN) (see Eqs. 4.33), thus not allowing negative
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values of TN and therefore implicitly imposing that b can only evolve for positive values of
the TN . 

ṪN =

(
δ̇N +

V̇ (TN )

πb2

)
E
(

1− a

b

)
6bsat

ȧ =
V̇

4πh(Ψ)a2

ḃ = −πb3FN
(
smoothmax(10−3, TN )

Σ0

)γ
ε̇Ceq

V̇ = smoothmax(|V̇L|, |V̇H |) ·


sign(V̇L) if |V̇L| ≥ |V̇H |

sign(V̇H) if |V̇H | > |V̇L|

V̇ D
L = 8πD

TN
q (fL)

with fL = smoothmax

(
a2

(a+ 1.5L)2
,
a2

b2

)
, L =

(
DσVM
ε̇Ceq

)1

3

V̇ triax
L =


2ε̇Ceqa

3πh(Ψ)m

{
αn

∣∣∣∣ σHσVM

∣∣∣∣+ βn(m)

}n
if

∣∣∣∣ σHσVM

∣∣∣∣ ≥ 1

2ε̇Ceqa
3πh(Ψ) {αn + βn(m)}n σH

σVM
if

∣∣∣∣ σHσVM

∣∣∣∣ < 1

V̇ D
H = 8πD

TN
q (fH)

with fH =

(
a2

b2

)

V̇ triax
h =



2ε̇Ceqa
3πh(Ψ)m


[
αn

∣∣∣∣ σHσVM

∣∣∣∣+
m

n

]
(

1− 0.87
a

b

) 3
n


n

if

∣∣∣∣ σHσVM

∣∣∣∣ ≥ 1

2ε̇Ceqa
3πh(Ψ)


[
αn +

m

n

]
(

1− 0.87
a

b

) 3
n


n

σH
σVM

if

∣∣∣∣ σHσVM

∣∣∣∣ < 1

(4.33)

Including the two upper constraints in the material nonlinear solver results in adding two
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additional equations, thus increasing the numerical burden required to solve each interface
material point. The requirement b ≤ bsat is arbitrary, therefore we decide to loosely enforce
it by inhibiting nucleation if bn ≥ bsat. The requirement on a and b are not enforced during
the solution of the nonlinear system but only after convergence has been achieved.

The implemented residual equations for the material nonlinear system are:

RTN =
(
T n+1
N − θM

(
ṪN

)) 1

10

Ra =
(
an+1 − smoothmax

(
a0, θ

M (ȧ)
)) 1

an

Rb =
(
bn+1 − θM

(
ḃ
)) 1

bn

(4.34)

where θM means utilizing the θ method (see Eq. 4.35) to integrate the rate equations in
4.33. Furthermore, the fractions on the right side are scaling factors to normalize the residual
values. The only residual equation that is not normalized according to the previous time
step value is the one for the normal traction. For this equation a scaling factor of 10 has
been selected to avoid unnecessary large residuals when load redistribution occurs.

Equation 4.34 defines a nonlinear system of equations that needs to be solved numerically.
We utilized the SNES library available in PETSC [7], which is already available in MOOSE.
This provides the flexibility to try different solvers before giving up on the solution of the
nonlinear system and provides a finite difference algorithm. To solve the nonlinear system
the interface material first tries a standard newton method for the entire timestep. If the
standard solver fails, then an adaptive substep is used and a newton solver with line-search
is adopted. The maximum allowed number of substeps can be specified by the user in the
input file.

The θ method was used to integrate the rate equations:

xn+1 =
(
θF n + (1− θ)F n+1

)
∆t+ xn (4.35)

where 0 ≤ θ ≤ 1, n is the time step index and F is the function value . For θ = 1
one recovers the forward Euler (explicit) time integration scheme, θ = 0 one obtains the
backward Euler (implicit) and for θ = 0.5 one obtains the Cranck-Nicolson method (second
order, implicit) integration method. In our implementation, θ is a user defined parameter,
thus allowing the user to decide which time integration scheme to use. In what follows we
always used the backward Euler method (e.g θ = 0).

The calculation for the shear traction is done independently from the normal traction and
uses staggered values of a and b to make the shear tractions independent from the opening
traction. This strategy was adopted for numerical efficiency and because shear tractions do
not contribute to damage. This also allows us to use a closed form solution for the shear
traction rate equation:
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TS,1/2 = ηδuS,1/2 + exp

(
−C ∆t

η

)(
T oldS,1/2 − ηδu̇S,1/2

)
with

C =
G
(

1− a

b

)
6bsat

η = ηS ·

1 if
a

b
=< 0.5

2
(
−a
b

+ 1
)

if
a

b
=≥ 0.5

(4.36)

4.2.2.1 Avoid bulk elements interpenetration

The proposed traction separation rate relationship is suitable for a implementing a stiff-
ness penalty methodology to prevent interpenetration. It should be noted that the module
assumes an initial interface thickness W = 6bsat, therefore interpenetration is assumed to
happen only if the interface normal displacement δN < −W . When this condition is met the
interface stiffness C is multiplied by a penalty factor Epenalty = 10.

4.2.3 Interface model parameters

For all the results in this report the grain boundary cavitation model parameters are the
same as those identified in Messner et al. [34] and are reported here for completeness.

symbol description value units
β traction nucleation exponent 2 unitless
n creep rate exponent 5 unitless
a0 initial cavities half radius 5 · 10−5 mm2

b0 initial cavities half spacing 0.06 mm2

D grain boundary diffusion coefficient 1 · 10−15 mm3 /MPa · h

Ψ cavity half tip angle 75 [◦]
Σ0 traction normalization paramter 200 mm2

FN
NI

normalized nucelation rate constant 2 · 104 1/mm2

Nmax

NI
normalized maximum cavity density 1 · 103 1/mm2

Einterface interface Young modulkus 150 · 103 1/mm2

Epenalty interpenetration penalty coefficinet 10 unitless
ηS sliding visocisty 1 · 106 unitless
Ginterface interface in-plane Shear modulus 52.63 · 103 1/mm2

theta parameter for the time integration scheme 0 unitless

Table 4.1: Grain boundary cavitation material parameters.

Table 4.2 shows the typical damage parameters used for all the results presented in this
work.

Table 4.3 shows the typical nonlinear solver parameters used to determine if the nonlinear
system has converged.
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symbol description value units
Dcr maximum damage before element fail 0.9 unitless
tcr minimu allowed traction residual life 50 h
TN,cr maximum aloweed normal traction 1400 MPa

Table 4.2: Grain boundary cavitation damage parameters.

symbol description value units
abs tol absolute tolerance 1 · 10−6 unitless
rel tol relative tolerance 1 · 10−6 unitless
step tol step tolerance 1 · 10−6 unitless

Table 4.3: Grain boundary cavitation SNES parameters. For more details the reader is
referred to PESTC manual [6].

Table 4.4 shows the available options to change the behavior of the GB cavitation model.

flag name description possible values

vdot type the type of volumetric growth rate used

1 uses V̇L
2 uses V̇H

3 V̇H

triaxial vdot active

boolean enabling

V̇ triax
L and or V̇ triax

H

according to vdot type
true or false

max substep number maximum number of substeps any positive integer
nucleation active boolean enabling the nucleation equation true or false
growth active boolean enabling the cavity nucleation equation true or false
use SNES FD use PETSC finite difference for jacobian calculation true or false

Table 4.4: Grain boundary model options.

4.3 Model validation and testing

The improved model was first tested to verify that the smoothmax function and all constraints
are respected. Simple tests were performed on a mesh with two elements. Each element
represents one grain. The two element simulations verify that the improved interface model
is working as expected. Figure 4.4 shows the two element mesh utilized for testing. The
characteristic size of bulk elements utilized in the two element simulation is comparable to
the one that will be used for CPFEM simulations.

The first test applies uniaxial cyclic loading to the top (z = Z) surface of the two 2 element
simulation (see Table 4.5 for other boundary conditions). This simulation demonstrates that:

• cavity nucleation starts after accumulating a certain strain
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Figure 4.4: The two element mesh utilized to check the model behavior. On the left the mesh
is colored by grain number, on the right the interface between the two grains is highlighted
in green.
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surface dispx dispy dispz
x = 0 0 free free
x = X equalvalue free free
y = 0 free 0 free
y = Y free equalvalue free
z = 0 free free 0
z = Z free free imposed

Table 4.5: Boundary conditions for the 2 element displacement controlled simulations.

• cavity nucleation is not active if the interface is under compression

• the cavity can increase or decrease in size

• the minimum cavity radius constraint is respected

• the interface is stiffer than bulk elements

Figure 4.5 shows the evolution of the cavity radius a and half spacing b versus time. The
normal interface traction TN is also plotted for reference. The cavity radius increases while
the normal traction is positive and decreases when the normal traction is negative. The
fixed value of a = 5.5 · 10−5 between 200 and 300 hours matches the imposed minimum
cavity radius a0. Around 300 hours the normal traction becomes positive again and the
cavity radius increases. Looking at the cavity spacing plot, cavities start nucleating after
approximately 25 hours. This is the effect of imposing a threshold on the cavity nucleation
equation. After this point cavities nucleate quickly until the normal traction starts dropping
(100 hours). When the normal traction becomes negative b becomes stationary, and starts
decreasing again when the traction becomes positive. The last plot depicts the interface
strain versus and the grain strain in the loading direction versus time. Before damage starts
accumulating the grains accommodate most of the deformation. This confirms that with an
interface thickness of W = 6bsat the pristine interface is stiffer than bulk elements. When
damage starts accumulating the interface softens as expected.

Another three tests use the three different cavity growth volumetric rates (V̇L, V̇H , and
both together) and check whether simulations can proceed up to complete separation. The
applied boundary conditions for the three simulations are identical and are listed in Table
4.6. Results are shown in Figures 4.6, 4.7, and 4.8, in which a) shows the final configuration
after rupture (displacements are reduced by a factor of 1000), b) depicts the imposed traction
and the interface displacement jump versus time and c) depicts the interface damage and the
interface displacement jump versus time. For all simulations the critical damage Dcr = 0.9
and tcr = 50 hours. All simulations are able to achieve complete separations. This validates
the minimum residual stiffness approach presented in the previous section. The results also
show that simulation can proceed up to very high damage fraction value without issues.

We then tested the improved interface model on a 15 grains microstructure subject to
creep test conditions where a simple power law creep relationship is used to model grains
deformation. The power law creep model evolves the fluidity utilizing a Voce law to simulate
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Figure 4.5: Results of the 2 element uniaxial cyclic test. a) cavity half radius a and normal
traction TN versus time, b) cavity half spacing b and normal traction TN versus time, c)
interface strain and grain elastic strain versus time.
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Figure 4.6: Results for the 2 element, stress-controlled simulation utilizing only the V̇L
term: a) final configuration after rupture (displacements are reduced by a factor of 1000), b)
traction and the interface displacement jump versus time and c) the interface damage and
the interface displacement jump versus time.
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Figure 4.7: Results for the 2 element, stress-controlled simulation utilizing only the V̇H
term: a) final configuration after rupture (displacements are reduced by a factor of 1000), b)
traction and the interface displacement jump versus time and c) the interface damage and
the interface displacement jump versus time.
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Figure 4.8: Results for the 2 element, stress-controlled simulation utilizing both V̇L and V̇H
terms: a) final configuration after rupture (displacements are reduced by a factor of 1000),
b) traction and the interface displacement jump versus time and c) the interface damage and
the interface displacement jump versus time.
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surface dispx dispy dispz Tx Ty Tz
x = 0 0 free free N/A N/A N/A
x = X equalvalue free free 0 N/A N/A
y = 0 free 0 free N/A N/A N/A
y = Y free equalvalue free N/A 0 N/A
z = 0 free free 0 N/A N/A N/A
z = Z free free equalvalue N/A N/A 180

Table 4.6: Boundary conditions for the stress controlled, 2 element simulations, Traction
values are in MPa.

the softening behavior exhibited by Grade 91 due to microstructural coarsening:

ε̇Ceq = ε̇0

(
σ

η

)n
with (4.37)

η = η0 + A
(
1.0− exp

(
−bεCeq

))
(4.38)

where ε0 = 1 · 10−4 1/hr is a scaling constant η0 = 220 MPa is the initial fluidity, A = −20
is the maximum allowed fluidity variation, b = 50 is parameter related to the rate of change
of η0, and n = 5 is the power law creep exponent. The values ε0, n, and η0 were selected to
match the value suggested in [34]. The aim of this test were two-fold: (i) provide a complex
environment to assess the improved interface model and (ii) test the possibility of material
softening to better describe the deformation mechanisms in Grade 91.

Results were not as expected. After approximately 11.000 model hours the simulations
started having difficulties converging. We found that for some interface material points
the behavior of the V̇H equation becomes unreasonable. When damage starts accumulating
(Fig. 4.9.a ) the normal traction TN starts decreasing (Fig. 4.9.b ), however rather than
approaching zero in an asymptotic manner it plunges to unreasonable negative values (a
few GPa), the interface continues to separate (Fig. 4.9.c ), and damage keeps increasing.
This happens because the triaxial volumetric cavity growth term of V̇H becomes very large
and positive and thus overpowers the diffusion related cavity growth term. This produces
a net positive cavity growth rate (Fig. 4.9.g and 4.10) under interface compression. This
situation can only happen if the triaxility (4.9.e ) remains positive under compressive normal
tractions. These physical conditions exist only if the interface is subjected to large positive
transverse stresses ( 4.9.f). This unreasonable behavior results from the assumption that
cavities have a fixed shape and that an increase in damage must be supported by an increase
in separation. As already mentioned, the V̇H term is responsible for including the in-plane
void-void interaction effect representing cavity coalescence. However, it does so by increas-
ing the interface separation rather than making cavities more oblate. In other words the
failure of a ligament it is mathematically represented by generating a bigger spherical cavity,
which is not a reasonable behavior. So we decided to drop V̇H term. The V̇L term behaves
better because its triaxial contribution does not accelerate damage accumulation as fast the
V̇H term does. However there is no guarantee this behavior will not manifest under some
other circumstance. Therefore we added a safeguard to the interface material point killing
procedure (cf. Section 4.2.1.2). This safeguard tracks damage accumulation under negative
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Figure 4.9: Detailed results for the interface quadrature point exhibiting a damage increase
under compression: a) damage accumulation, b) normal traction, c) interface separation d)
hydrostatic stress in adjacent bulk elements, e) interface triaxiality, f) transverse stresses in
adjacent bulk elements, g) calculated cavity growth rate: V̇L, V̇H and all their components,
f) von Mises stresses in adjacent bulk elements.

tractions and marks the material point as failed if the damage accumulation rate and/or
traction rate are too high. We believe this described behavior is one of the reasons why
simulations performed in WARP3D were terminating before achieving reasonable values of
creep ductility. The revised model corrects this numerical defect.

Figure 4.11 compares the global strain and strain rate of two simulations, one utilizing
only V̇L (solid lines) and the other using the maximum between V̇L and V̇H (squares). The
latter simulation is the one in which the unreasonable behavior was found. The strains and
strain rates of both simulation are comparable until the numerical instability arises. The
simulation utilizing only the V̇L term is able to capture tertiary creep up to very large strains.

The last test was to compare results obtained in MOOSE for different mesh refinements
against both experimental [27] results and results obtained previously with WARP3D. We
used NEPER [41] to generate a 100 grain random microstructure and used three different
element sizes. The NEPER regularization features was used to remove small (“sliver”)
elements in the discretizations. We simulated a uniaxial creep test at 140 MPa for the
different meshes and compared the results. The average characteristic element length of the
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Figure 4.10: Cavity growth rates V̇L and V̇H and all their components before failure.
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Figure 4.11: Comparison of global strains and strain rates for two different simulations, one
using both volumetric growth rate terms(V̇La and V̇H , squares) and the other using only
the V̇L term (solid lines). a) Comparison of the strain rates versus time. The individual
contributions of the interface and grain rates to the overall strain rate is also shown. b)
Overall strain for both simulations.
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14, 000 and 10, 000 elements meshes are respectively smaller and larger than the characteristic
element length used in WARP3D mesh. The WARP3D simulations apply true periodic mesh
and boundary conditions, while the MOOSE simulations use a set of symmetry planes and
equal value boundary constraints to emulate periodic boundary conditions (see Table 4.8 for
details). The MOOSE simulations used the new crystal model implemented in NEML with
a Voce hardening model that includes the diffusion contribution resolved to each slip system.
The parameters of the model are presented in Table 4.7.

Results are shown in Figure 4.12. The various simulations reach different final creep
strains because we allocated the same wall-time to all of them, and not because they fail
at difference physical times. The behavior of all simulations is similar up to the onset of
tertiary creep. The time to tertiary is clearly mesh dependent however the variation between
the coarser and the finer mesh is still in the range of the experimental scatter. Furthermore,
results correctly capture the experimental trend shown by Kimura et al. [27] for the same
conditions.

symbol description value units
τ0 initial resolved critical shear stress 40 MPa
τsat saturation stress 12 MPa
b voce hardening paramter 66.67 unitless
γ0 scaling constant 9.55470706737 · 10−8 1/MPa

n hardening exponent 1 unitless
A diffusion creep parameter 1.2 · 10−9 1/MPa

ndiff diffusion creep exponent 1 · 10−9 unitless
E young modulus 150 · 103 MPa
ν Poisson’s ratio 0.285 unitless

Table 4.7: CPFEM simulation parameters.

surface dispx dispy dispz Tx Ty Tz
x = 0 0 free free N/A N/A N/A
x = X equalvalue free free 0 N/A N/A
y = 0 free 0 free N/A N/A N/A
y = Y free equalvalue free N/A 0 N/A
z = 0 free free 0 N/A N/A N/A
z = Z free free equalvalue N/A N/A 140

Table 4.8: Boundary conditions for the stress controlled, 2 element simulations. Traction
values are in MPa.

At this point we consider the small deformation implementation of the grain boundary
cavitation model complete. The only tasks remaining are to include large deformations (area
changes and rotations) in the CZM and to allow the use of true periodic boundary conditions
with the CZM. Furthermore, these results highlight the need to improve the GB cavitation
model by allowing cavities to become oblate.
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Figure 4.12: Mesh refinement study results.
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5 Effective stress measure for triaxial loading

For high temperature applications effective stresses are used to correlate a general stress
state to the time to rupture measured under uniaxial stress conditions. This correlation
is usually achieved with some linear or nonlinear combination of stress invariant that can
be formulated in terms of principal stresses. One of the simplest effective stress measure is
the maximum principal stress σ1 (with σ1 ≥ σ2 ≥ σ3) Other effective stress measures can
be defined with a combination of the principal stresses. For instance the von Mises can be
expressed as

σVM =

√
1

2

[
(σ1 − σ2)2 + (σ1 − σ3)2 + (σ2 − σ3)2

]
(5.1)

The von Mises stress is strictly related to the second deviatoric stress invariant by:

σVM =
√

3J2 (5.2)

By definition the σVM only retains the deviatoric portion of the stress tensor, thus neglecting
mean stress effect. The first invariant of the stress is

I1 = σ1 + σ2 + σ3 (5.3)

and the hydrostatic stress is

σH =
I1
3

(5.4)

By using a combination of some of the above stress invariants Hayhurst [20] proposed the
following effective stress that combines the von Mises, hydrostatic, and maximum principal
stress :

σe = α〈σ1〉+ βI1 + γσVM with α + β + γ = 1 (5.5)

where α, β, and γ are material dependent parameters that need to be calibrated with ex-
perimental data and are bounded such they are greater than zero.

In a later work Hayhurst and Henderson [22] suggested that the role of the first stress
invariant I1 on creep rupture time is already accounted for by including the first principal
stress and the von Mises stress. Therefore, they proposed a simplified effective stress:

σe = α〈σ1〉+ γσVM with α + γ = 1 (5.6)

where α and γ are material dependent parameters that needs to be calibrated with experi-
mental data and are bounded between 0 and 1. The symbol 〈·〉 means that only the positive
part of the argument is retained. Huddleston [24] proposed a different effective stress measure
that is a nonlinear combination of the von Mises stress and principal stresses:

σe = σVM exp

[
b

(
I1√

σ2
1 + σ2

2 + σ2
3

)]
(5.7)

where b is a parameters that needs to be calibrated with multiaxial experimental results. The
parameter b is not bounded. The Huddleston effective stress is currently used by Section III,
Division 5 of the ASME Boiler and Pressure Vessel design code [2] and by the British fitness
for service manual R5 [14]. The French design code RCC-MRx [1] provides two different
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options to compute the effective stress, one based on von Mises stress (Eq. 5.8) and the
other maximum shear (Eq. 5.9). In both cases the code suggests the user accounts for the
first stress invariant if data are available.

σe = ασVM + βI1α + β = 1 (5.8)

σe = α (σ1 − σ3) + βI1 with α + β = 1 (5.9)

where α and β are a material dependent parameters that need to be calibrated with experi-
mental data and are bounded between 0 and 1.

The calibration of effective stress parameters is usually performed with uniaxial and, if
available, biaxial experimental results. The calibrated effective stress is then used by de-
signer to estimate the creep rupture time of a component. Historically, biaxial test data
was sufficient because conventional reactors often utilize thin wall structure for components
subject to creep. However, as discussed previously, the core block of a heat pipe microreactor
generates substantially triaxial stresses. Therefore, this section assesses these common effec-
tive stress measures for triaxial stress states. However, to the best of our knowledge, triaxial
creep tests with controlled stresses have never been performed. Therefore, this chapter uses
the validated physically-based model to assess the effective stress measures, in lieu of direct
testing. A physically-based model can be used to extrapolate results outside its calibration
envelope as long as the physics does not change. Such models can also provide results for
conditions that are not experimentally achievable, either due to time or cost constraints. The
improved model presented in Chapters 3 and 4 is already capable of reproducing available
experimental results for Grade 91 (see Messner et al. [34] and Messner et al. [37]) and so
reasonably could be extended to multiaxial loads.

In this chapter we will use the model to generate creep rupture times for different mul-
tiaxial stress conditions. The data will be used to check if: (i) any of the effective stress
measure presented above can be safely used to predict the creep rupture time under a generic
multiaxial stress state and (ii) if there is a need to identify a way to produce triaxial exper-
imental results. This chapter is organized as follows: first we will present the simulations
used to generate triaxial rupture data, then we will present the procedures used to calibrate
effective stress parameters, and finally we will compute the correlations and error of each
stress measure against the results of the full CPFEM calculations.

5.1 Simulations setup and rupture time

Four increments of stress were used to generate loading combinations: 0, 60, 100, 140, and
180 MPa. The multiaxial stress space was probed by considering all possible combinations
of these stress values assigned to each of the three principal stresses. Table 5.1 list all the
simulations used to generate creep rupture time data in terms of the principal stresses. For
each simulation, each principal stress was applied as a constant load (dead load) condition
on one face of a periodic RVE. Pure triaxial stress state simulations (e.g. σ1 = σ2 = σ3))
were performed but are not included in the results as they do not produce reasonable rupture
times.

To compute a consistent time to rupture we had to select a failure criterion. Requiring
all the simulation to run until complete failure was ruled out because of the computational
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stress state σ1 σ2 σ3 Triaxiality Time to rupture
(MPa) (MPa) (MPa) (-) (hours)

uniaxial 60 0 0 0.33 3.04E+05
uniaxial 100 0 0 0.33 4.55E+04
uniaxial 140 0 0 0.33 4.63E+03
uniaxial 180 0 0 0.33 1.10E+03

biaxial 60 60 0 0.67 3.11E+05
biaxial 100 60 0 0.61 6.95E+04
biaxial 140 60 0 0.55 9.76E+03
biaxial 180 60 0 0.50 1.45E+03
biaxial 100 100 0 0.67 4.85E+04
biaxial 140 100 0 0.64 9.11E+03
biaxial 180 100 0 0.60 1.55E+03
biaxial 140 140 0 0.67 5.16E+03
biaxial 180 140 0 0.65 1.41E+03
biaxial 180 180 0 0.67 1.15E+03

triaxial 100 60 60 1.83 1.79E+05
triaxial 140 60 60 1.08 4.78E+04
triaxial 180 60 60 0.83 7.22E+03
triaxial 100 100 60 2.17 1.71E+05
triaxial 140 100 60 1.44 5.84E+04
triaxial 180 100 60 1.07 1.15E+04
triaxial 140 140 60 1.42 4.69E+04
triaxial 180 140 60 1.20 1.20E+04
triaxial 180 180 60 1.17 1.20E+04
triaxial 140 100 100 2.83 1.00E+05
triaxial 180 100 100 1.58 2.57E+04
triaxial 140 140 100 3.17 8.26E+04
triaxial 180 140 100 2.02 3.35E+04
triaxial 180 180 100 1.92 2.76E+04
triaxial 180 140 140 3.83 5.05E+04
triaxial 180 180 140 4.17 4.67E+04

Table 5.1: Stress states imposed for the different simulations classified by stress state. Tri-
axility and calculated time to rupture are also reported. Horizontal lines group simulations
into uniaxial, biaxial and triaxial groups.

ANL-ART-171 49



Initial study of notch sensitivity of Grade 91 using mechanisms motivated crystal plasticity finite

element method
September 2019

Figure 5.1: Cell average equivalent strain versus time (orange) for uniaxial simulations. The
interface equivalent strain (blue) and the grain equivalent inelastic strain (brown) are also
depicted. Stress level decreases from left to right from 180 MPa to 60 MPa

cost, as small substeps are required to process the last few percent creep strain. The time to
achieve a certain strain was also ruled out because the target strain must be known a-priori
but creep ductility is a function of the applied stress. Therefore we decided to declare failure
when the equivalent interface strain becomes equal to the equivalent inelastic bulk strain.
Figure 5.1 depicts the total cell equivalent strain (orange) versus time up to rupture for
the simulated uniaxial stress cases. The interface (blue) and grain bulk (brown) inelastic
equivalent strains contributions are also depicted. The trend of reduced creep ductility for
smaller values of applied uniaxial stress is supported by experimental evidence.

5.2 Effective stresses calibration

To compute the time to rupture from an effective stress first a uniaxial time-stress rela-
tionship must be defined. Often, the time to rupture can be expressed as a function of an
effective stress using a simple power law creep model such as:

tR = A (σe)
n (5.10)

where A and n are material parameters. By construction an effective stress must be equiva-
lent to the applied stress for uniaxial loading conditions, so uniaxial test cases will be use to
calibrate A and n. Moreover, A and n are material parameters and should be independent
from the effective stress measure. Therefore here we calibrate the rupture correlation pa-
rameters against the uniaxial data only and then apply that uniaxial correlation to predict
multiaxial failure. This is the approach used in current high temperature design methods.
Previous work with this CPFEM model demonstrates a mechanism shift at lower values of
stress [37]. For the current work we want to use a uniaxial rupture correlation that captures
this mechanism shift. As such we elected to use a piecewise log-linear relation to capture
both the high stress and low stress power law relations between uniaxial stress and rupture.
With this choice the uniaxial rupture time is perfectly predicted by all the effective stresses.
The only differences will therefore be in the ability of the different stress measures to predict
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multiaxial rupture. The identified values A and n and associated stress ranges are presented
in Table 5.2

stress range A n
σe < 100 1.24915179e+ 12 −3.71914119
100 ≤ σe < 140 1.76058693e+ 18 −6.79366232
σe ≥ 140 8.37396380e+ 15 −5.71137536

Table 5.2: Identified values of A and n for different stress ranges (Eq. 5.10).

5.3 Effective stresses parameters calibration

The analyzed effective stress measures are summarized in Table 5.3.

name equation
max σ1

mises σVM

Hayhurst 1972 α〈σ1〉+ βI1 + γσVM

HLM 1978 α〈σ1〉+ γσVM

huddleston σVM exp

[
b

(
I1√

σ2
1 + σ2

2 + σ2
3

)]

RCC-MRx mises ασVM + βI1

RCC-MRx max α (σ1 − σ3) + βI1

Table 5.3: List of equations for the analyzed effective stresses.

The parameters of each effective stress (for those that have free parameters) have been
calibrated utilizing a best fit approach by minimizing the total root mean square relative
error (RMRSE) of the predicted rupture time for the effective stress versus the rupture
computed via CPFEM simulations. The RMSRE for the optimization problem was defined
as:

RMSRE =

√√√√ 1

N

N∑
i=1

(
teff,i − tcp,i

tcp,i

)2

(5.11)

where tcp is the time to rupture computed via CPFEM simulations, teff is the time to rupture
predicted by the effective stress, N is the number of data points and i is the index indicating
a particular datapoint.
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The effective stress parameters have been calibrated twice, once utilizing uniaxial and
biaxial data, and once utilizing all the available datapoints, including triaxial stresses. The
former procedure is representative of current design practice, as triaxial creep data is not
available. Parameter calibration has been performed with both a global and a gradient based
optimizer. For effective stress models having two variables 100 different initial starting point
were utilized to ensure the fit finds a global minimum. For each variable initial guesses were
distributed on a regular grid. The parameter b in the Huddleston model is unbounded. In
this case we used 20 initial regularly spaced initial guesses between 0 and 2.5. The parameter
generating the smallest RMSRE are presented in Table 5.4

effective stress name calibration type α β γ b
Hayhurst 1972 biaxial 0.538 0.00 0.461 -
HLM 1978 biaxial 0.538 - 0.461 -
huddleston biaxial - - - 0.0627
RCC-MRx mises biaxial 0.0282 0.971 - -
RCC-MRx max biaxial 0.491 0.508 - -

Hayhurst 1972 triaxial 0.409 9.86e-13 0.590 -
HLM 1978 triaxial 0.409 - 0.461 -
huddleston triaxial - - - 1.06
RCC-MRx mises triaxial 0.128 0.871 - -
RCC-MRx max triaxial 0.491 0.508 - -

Table 5.4: List of best fit parameters for all effective stresses.

5.4 Results

The root mean square error between the computed and predicted time rupture are show
below for three conditions:

1. biaxial fit and RSMRE value computed considering only uniaxial and biaxial data

2. biaxial fit and RSMRE value computed considering all datapoints

3. triaxial fit and RSMRE value computed considering all datapoints

Error measure 1 assesses the measures for the current method of fitting and testing
against biaxial experimental data. Error measure 2 assesses how an effective stress fit to the
current, biaxial experimental data might perform when called upon to predict rupture for
triaxial stress states. Error measure 3 assesses how the measures would perform in the best
case where triaxial data is available, essentially selecting the best possible effective stress
measure for arbitrary stress states.

Figure 5.2 compares the RSMRE errors for case 1 and case 2. Figure 5.2 compares the
RSMRE errors for case 2 and case 3. Figures 5.4, 5.5, 5.6, 5.7, 5.8, 5.9 and 5.10 depict the
distribution of RSMRE error for each effective stress for all the three cases above.
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Results show that when parameters are calibrated against biaxial data, all the models
can accurately predict the time to rupture for biaxial stress states. However, when calibrated
against biaxial data only a few effective stress measures are able to reasonably predict the
creep rupture life for triaxial stress states. Surprisingly the model proposed by Huddleston
[24] and utilized by American Society of Mechanical Engineers [2] and EDF Energy Nu-
clear Generation Ltd [14] shows worst extrapolation behavior. The best models in terms of
RSMRE are the ones proposed by Hayhurst et al (e.g. Hayhurst 1972, HLM 1978 ). They
perform well when utilizing only biaxial data to predict the life for triaxial stress states
(RSRME 45 %). Note that the optimizer sends parameter β to zero for the Hayhurst 1972
model, degenerating it to the HLM 1978, in line with Hayhurst’s observations.

Most of the models improve their prediction if calibrated against triaxial data but again
the Hayhurst 1972 and HLM 1978 models are the most accurate. Again the optimizer
degenerates the Hayhurst 1972 model to the HLM 1978 model, implying that a combination
of von Mises and max principal stresses are sufficient and a dependence on the hydrostatic
stress is not required.

The RSMRE error is not the only quantity that we need to consider when selecting an
effective stress measure. Ideally, the error in the rupture life predictions using an effective
stress measure would be on the conservative side, i.e. the effective stress predicts a shorter
rupture life than the actual multiaxial rupture time. Considering this additional criteria and
looking at the distribution of the RSMRE errors for case 2 (Figs,5.4-5.9.b ), note that max,
hayhurst 1972, HLM 1978, and rccmrx principal are conservative. Among the conservative
effective stresses the most accurate are hayhurst 1972 and HLM 1978, which again the
optimizer degenerates to be the same model, and the most (over) conservative are max and
rccmrx principal.

When calibrating against triaxial data all the models with parameters become conserva-
tive with the most conservative being rccmrx principal and huddleston. The most accurate
are again the hayhurst 1972 and HLM 1978 models, again both degenerating to the same,
simple linear combination of the von Mises and maximum principal stresses.

These results suggest the use of either hayhurst 1972, HLM 1978 models to predict the
creep rupture life of Grade 91 under multiaxial stress states. The data also suggests that
care should be used when using effective stress measures calibrated against biaxial test data
when predicting the creep rupture life for triaxial stress states as some of the commonly used
effective stress measures are non-conservative. As discussed in Chapter 6, this conclusions
should be validated experimentally.
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Figure 5.2: RMSRE of effective stress parameters calibrated against uniaxial and biaxial
data versus the predicted time to rupture for the different effective stress models. Blue bars
represent the RSMRE when only considering biaxial data, orange bars when considering all
datapoints.

Figure 5.3: Comparison of RMSRE for effective stress parameters calibrated against: (i)
uniaxial and biaxial data (blue) and (ii) all datapoints (orange). The error is computed by
using all data points
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Figure 5.4: Comparison RSMRE distribution for the max stress of simulated versus predicted
time to rupture. Color represent RSMRE error. a) biaxial fit versus biaxial data, b) biaxial
fit versus all data c) triaxial fit versus triaxial data
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Figure 5.5: Comparison RSMRE distribution for the mises stress of simulated versus pre-
dicted time to rupture. Color represent RSMRE error. a) biaxial fit versus biaxial data, b)
biaxial fit versus all data c) triaxial fit versus triaxial data

ANL-ART-171 56



Initial study of notch sensitivity of Grade 91 using mechanisms motivated crystal plasticity finite

element method
September 2019

Figure 5.6: Comparison RSMRE distribution for the Hayhurst 1972 stress of simulated
versus predicted time to rupture. Color represent RSMRE error. a) biaxial fit versus biaxial
data, b) biaxial fit versus all data c) triaxial fit versus triaxial data
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Figure 5.7: Comparison RSMRE distribution for HLM 1978 stress of simulated versus pre-
dicted time to rupture. Color represent RSMRE error. a) biaxial fit versus biaxial data, b)
biaxial fit versus all data c) triaxial fit versus triaxial data
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Figure 5.8: Comparison RSMRE distribution for Huddleston stress of simulated versus pre-
dicted time to rupture. Color represent RSMRE error. a) biaxial fit versus biaxial data, b)
biaxial fit versus all data c) triaxial fit versus triaxial data
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Figure 5.9: Comparison RSMRE distribution for the RCC-MRx mises stress of simulated
versus predicted time to rupture. Color represent RSMRE error. a) biaxial fit versus biaxial
data, b) biaxial fit versus all data c) triaxial fit versus triaxial data
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Figure 5.10: Comparison RSMRE distribution for the RCC-MRx max stress of simulated
versus predicted time to rupture. Color represent RSMRE error. a) biaxial fit versus biaxial
data, b) biaxial fit versus all data c) triaxial fit versus triaxial data
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6 Conclusions

This report describes a physically-based CPFEM model for creep rupture in Grade 91 that
can be used to predict the effect of stress triaxiality on the creep life of the material. The
stress states in the core block of heat pipe microreactors are significantly different than those
found in typical thin-walled pressure vessel components in conventional advanced reactor
designs. As discussed in the report, the effective stresses used to correlate rupture times
under multiaxial loads to uniaxial rupture data may not be accurate for core block designs
because current effective stress measures have only been calibrated and tested against biaxial
rupture data.

The CPFEM model can make predictions of creep rupture life for arbitrary stress states,
including those found in reactor core blocks. Moreover, the physically based model developed
here should be more accurate, compared to conventional empirical methods, when used to
make predictions for loading conditions for which it was not directly calibrated. Therefore,
the physically-based model should be an accurate method for assessing multiaxial rupture
life.

However, despite its sophistication, the CPFEM simulations are still a model and there-
fore must be validated. Previous work has extensively validated the model against uniaxial
creep rupture data. Arguably, because the physics remains the same for uniaxial, biaxial,
or triaxial loading, this validation should be sufficient to make predictions of creep rup-
ture in triaxial conditions. However, the model should also be validated against a limited
number of multiaxial rupture tests. Ideally, these tests would be conducted under truly 3D
triaxial stress states. However, to our knowledge no such triaxial creep test method exists.
Validation against biaxial results could at least be used to demonstrate that the model is
accurately extrapolating from uniaxial to multiaxial stress states. There are well-established
methods for conducting biaxial rupture tests, discussed above. However, to our knowledge
biaxial creep tests have not be done for Grade 91 in the past. Therefore, we recommend a
limited experimental program aimed at generating a few biaxial rupture tests on Grade 91
at relevant heat pipe reactor temperatures in order to validate the CPFEM model and the
effective stress recommendations made in this report.

If validated with multiaxial creep tests, the model results presented here suggest current
design practice should be altered when designing Grade 91 high temperature components
with significant stress triaxiality. Future work would be needed to implement these changes in
relevant design codes and standards. The path forward would be to use the uniaxial rupture
model developed from the CPFEM calculations in [37] in combination with the calibrated
Hayhurst effective stress described in this report. The combination of this effective stress and
uniaxial rupture model captures all the behavior observed in the physically based CPFEM
model and not accounted for in current design codes: mechanism shifts between high and low
stress uniaxial rupture life regimes, a transition between notch strengthening and weakening,
and the correlation between multiaxial stress and rupture.
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A Stress analysis of a core-block concept

The following is a preliminary version of a report describing an inelastic analysis of a core
block structure completed at Argonne National Laboratory. The triaxiality results were
abstracted in Chapter 2 above.
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1. Objectives 
Special purpose reactor was designed to supply energy on remote areas or military bases, where 
electrical power is needed and it is difficult to supply conventional fuels (coal, LNG, diesel, etc.) 
through transportation regularly. The presented study focuses on the reactor thermal-structural 
analysis, and with limited information on service loads, tries to apply ASME BPVC Section III 
Div.5 to estimate possible failure modes of the current design, especially those related to creep 
damage. 

2. Scope 
The scope of this analysis was limited to the central part of the special purpose reactor, the core 
block, which holds fuel pins in place and work partially as heat pipe to take the reactor heat away 
for electric power generation.  The working conditions were assumed to be between 677 0C and 
700 0C, with possible cooling down and heating up between those two temperatures. The main 
load will be thermal load due to inhomogeneity of the heat flux of fuel pin nuclear reactions; 
pressure load was assumed to be small; other loads, such as seismic load were not considered in 
this report. Residual stresses, due to core block manufacturing and previous cycles, were assumed 
to be less than the material yield strength at 677 0C. 

3. Methodology 
A finite element model was setup with the core block geometry, including the holes for fuel pins 
and heat pipes. Material mechanical properties of the model were from ASME BPVC Section III, 
Div.5 [1]. An initial analysis based on secondary stress range were accomplished by following the 
procedures of  [1], both elastic and inelastic analysis were included and for future creep damage 
calculations, ductility exhaustion, even though not included in [1], was recommended to reduce 
creep damage calculation result conservatism introduced by following time-fraction method in [1].  

4. Overview of Analysis 
The core block is the central part of the special purpose reactor, which generates electricity for 
remote sites or military bases where the conventional fuels is not easily accessible. The core block 
contains holes for fuel pins, which generate heat due to nuclear reactions, and holes for heat pipe, 
which take the generated heat away for power generation. The magnitude of the heat flux from the 
fuel pins shows a distribution along their axial direction, and the resulted inhomogeneous 
temperature field in the core block leads to high thermal stresses. The webs between the holes 
prone to fail as they can be as thin as 1mm or less,  and under high stress at high temperature (~700 
0C), they are the foci of the presented thermal-mechanical analysis and also part of the reasons the 
core block was chosen for this study presented in the report.  
The simulation was run workstation with operating system Windows 10 Pro, 2 Intel®Xeon®  E5-
2687W CPUs with 24 cores and 500GB memory. The FEA software is ANSYS Mechanical 
version 19.2. 
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5. Assumptions 
The following assumptions were made for FEA modeling: 

1. Heat flux on the fuel pin hole walls is a function of the axial location only. 
2. Between the fuel pin outside wall and the fuel pin hole wall, heat transfer only occurs in 

the radial direction, i.e., no heat transfer along the fuel pin axial direction. 
3. Material is isotropic and homogeneous, possible thermal aging, irradiation 

embrittlement/swelling/creep were neglected. 
4. Residual stresses are not included in the model, but during the analysis, the residual stress 

magnitude was assumed to be equal or less than the material yield strength. 

6. Geometry and Mesh 
6.1 Geometry 
The geometry of the core block FEA model is displayed in Figure 6.1 blow, there are totally 352 
fuel rod holes (dia. 14.25mm ones) and 204 heat pipe holes (dia. 15.75mm ones) in the model. 
 

 
 

Figure 6.1 Core blocks with fuel rods (for a better view of holes). 

6.2 Mesh 
The FEA model mesh contains about one million quadratic solid elements (SOLID186), with the 
element size on the two end planes around 0.8mm and 20 elements along the core block height. 
Mesh refinement study verified the FEA results were mesh-independent. 
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Figure 6.2 FEA model mesh. 

 

7. Materials 
The core block is designed to be made of Type 316 stainless steel, the material property data were 
provided by [1], which gave a density of  8030kg/m3 and a Poisson’s ratio of 0.31. Other material 
property data from [1] are shown in Table 7.1 to Table 7.5 below. As the whole part is designed 
to work around 700 0C, material creep is inevitable, so Table 7.5 contains material creep law 
information. 
 

 
Table 7.1 SS316 Young’s modulus 
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Table 7.2 SS316 thermal expansion coefficient. 
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Table 7.3 SS316 thermal conductivity. 
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Table 7.4 SS316 Specific heat. 

 

 
 

Table 7.5 Creep law parameters for SS316. 

8. Loads and Boundary Conditions 
In the FEA model, only thermal load from the fuel rod nuclear reactions was considered, [2] 
provides the normalized peaking factor along axial locations of the fuel pins (see Figure 8.1).  It 
was assumed the heat transfer between the fuel pin and the fuel pin hole wall was only along their 
radial direction, then the heat flux values at the fuel rod hole wall along the axil direction were 
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calculated and are shown on Table 8.1,  Figure 8.2 shows the heat flux contour plot at fuel pin 
walls in the core block. 
  

 
Figure 8.1 Axial normalized peaking factor distribution of power. 

 

 
Table 8.1 Heat flux at the fuel rod holes along the axial direction. 
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Figure 8.2 Heat flux on the fuel pin hole walls. 

 
Figure 8.3 Constant temperature on the heat pipe hole walls. 

 
For thermal boundary conditions, the heat pipe hole walls are at 677 oC, all other surfaces are 
thermally insulated, except those fuel pin hole walls with heat flux.  
Mechanical boundary conditions are shown in Figure 8.4, the bottom plane displacement is fixed 
in Z direction, the top plane was constrained in a way it moves as a plane in Z direction, and two 
side planes are fixed in their planes. 
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Figure 8.4 Mechanical boundary conditions 

 

9.   Results and Analysis 
The FEA model with the boundary conditions and loads described above was run for the time 
period of 100,000 hours. During the first second, the thermal load, i.e., the heat flux at the fuel pin 
hole walls, was applied as a ramp to a full load without material creep, after that the temperature 
field keeps constants and the material creep was included for the rest of the simulation period.  
 

9.1 Thermal analysis results 
As the thermal load is applied as a ramp within the first second and keep constant for the rest of 
the simulation, only the temperature field at the end of first second is analyzed. 
 
Figure 9.1 shows the temperature field at the mid-plane of the core block. As the heat pipe hole 
walls are kept at 677 0C, the regions around the heat pipe walls and regions around the core block 
edges are with that temperature. When the fuel pin walls are heated up by the fuel pins’ nuclear 
reaction, there are temperature “hotter” zones at the webs between the fuel pin holes. 
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Figure 9.1 Temperature distribution at the mid-plane of the core block. 

 
9.2 Structural analysis 
Since the reactor studied is only a concept, design condition and service loads have not been 
specified, during the following discussion, only thermal stress, which is categorized as secondary 
stress is involved, while the primary stress, which is the results of pressure load, is assumed to be 
small due to the fact of the low reactor operating pressure. The following analysis of the FEA 
results will focus on how to apply design codes on the design and three aspects of FEA results 
were obtained and analyzed, they are 
 

1. Stress intensity. 
2. Equivalent stress based on Huddleston’s theory. 
3. Triaxiality factors (TF). 

 
 
9.2.1 Stress intensity 
Stress intensity is defined as the maximum of the differences between three principal stresses 
𝜎𝜎1,𝜎𝜎2,𝑎𝑎𝑎𝑎𝑎𝑎 𝜎𝜎3,  as shown in Equation (1) below: 
 
 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠𝑖𝑖𝑠𝑠𝑖𝑖 = max�𝑎𝑎𝑎𝑎𝑠𝑠(𝜎𝜎1 − 𝜎𝜎2),𝑎𝑎𝑎𝑎𝑠𝑠(𝜎𝜎2 − 𝜎𝜎3),𝑎𝑎𝑎𝑎𝑠𝑠(𝜎𝜎1 − 𝜎𝜎3)�          (1) 
 

Figure 9.2 to Figure 9.4 shows the core block mid-plane stress intensity contour plots at start of the holding 
(1 second), 1000 hours, 10000 hours, 50000 hours and 100,000 hours. At start of the loading (1 second, 
Figure 9.2 (a)), the webs between fuel pin holes shows a stress intensity larger than 30MPa, the allowable 
stress values for SS316 at 700 0C, this will not kill the design, as the thermal stress here is regarded as 
secondary stress, instead of primary stress. The contour plots also demonstrate that stress intensity reduce 
to less than 30MPa within 1000 hours (Figure 9.2 (b)), and by 10,000 hours, the stress intensities drop to 
less than 20MPa at most of regions, and after that, they continue to decrease, but at slower rates. Figure 9.4 
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(b), the average stress intensity transient plot, shows that most of the stress intensity drop occurs during the 
first 10,000 hours, after that it decreases slowly, from 50,000 hours to 100,000 hours, the average stress 
intensity changes less than 1MPa. 
 

 
Figure 9.2 Stress intensity at (a) 1 second, and (b) 1,000 hours. 

 
 

 
 

Figure 9.3 Stress intensity at (a) 10,000 hours, and (b) 50,000 hours. 
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Figure 9.4 (a) Stress intensity at 50,000 hours, (b) average stress intensity transient. 
 
 
 
The stress intensity here refers to stress intensity of thermal stress, and if the thermal load ramping 
rates are very low, the thermal stresses can also be regarded as secondary stress range QR, as the 
two stress extremes will be at the reactor starting low temperature soaking period and full load 
high temperature soaking period. The secondary stress range magnitude affects the core block 
structural integrity in a couple of ways [1], (1) Whether the structure shakedown, (2) The maximum 
accumulated creep strain, (3) Cyclic load strain range and (4) Creep damage. As the reactor service 
loads and allowable deformation have not been specified, only item (1) and (4) are discussed in 
the following parts of the report. 
 
Figure 9.2 (a) shows the thermal stress contour plot at the start of full load soaking, the plot shows 
the total stress magnitudes (max. 76MPa, after linearization they should decrease), considering 
possible residual stresses at starting temperature 677 0C should be less than the yield strength (Sy 
appr. 100MPa at 677 0C[1]), QR,max is about 176MPa. Figure 9.10 is from [1],   parameters X and 
Y determines where the regimes the structure will operate, i.e., elastic, shakedown, alternating 
plastic or ratchetting.  Based on the definite of Y value (Y = QR/Sy), according to [1], Y < 2, and 
as the primary load is small (low pressure), the core block will operate in either “E” or “S2” 
operating regime (elastic or shakedown regime) shown in Figure 9.10. 
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Figure 9.10 Effective Creep Stress Parameter Z [1]. 
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The other effects of QR is on the creep damage, higher QR leads to higher initial holding stress for 
either the cyclic load enhanced creep damage or un-disturbed stress relaxation creep damage [1] 
when the creep damage is evaluated through time-fraction approach by elastic analysis. 
 

 
Table 9.1 Stress intensity changes during 100,000 hour time period. 

 
From the results shown in Figure 9.2 to Figure 9.4, the stress intensity keeps decreasing from 0 
hours to 100,000 hours, and most of the stress intensity drop occurs within the first 1,000 hours, 
shown in Table 9.1.  If elastic analysis approach [1] were applied, the stress intensity results from 
0 hour data frame would be utilized, even though stress relaxation is later involved, due to the fact 
that the stress relaxation would be based on uniaxial creep relaxation experiments and stress state 
effects would not be included and the creep damage estimated this way could be overly 
conservative.  The next two sections will introduce stress state effects for creep damage 
calculation, one is for stress-based method (inelastic, Huddleston’s method) and the other is for 
strain based method (ductility exhaustion), and applying them to future creep damage estimation 
for the core block could reduce the conservatism introduced by time fraction method. 
 
9.2.2 Equivalent stress based on Huddleston's theory 
The equivalent stress based on Huddleston’s theory [3] is defined as: 
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Figure 9.5 to Figure 9.7 shows the contour plots of the equivalent stresses calculated from FEA 
results based on Equation (2), they demonstrates that on the edges of the core block, there are some 
regions with high stresses, Table 9.2 shows the maximum equivalent stresses probed on the 
contour plots at the web locations, both the above mentioned figures and table show that the 
equivalent stresses decrease with time, and the total creep damage during 100,000 hour service life 
< 0.33 (“1” means the material is damaged by creep). The creep rupture data of SS316 are from 
Table HBB-I_14.6B of [1], as the table only provide data till 300,000 hours with 27MPa at 700 
0C, no extrapolation was done for lower stress and higher rupture life, the creep damage values in 
Table 9.2 should be conservative. 
 

 
Figure 9.5 Equivalent stress at (a) 1 second, start of holding and (b) 1000 hours. 

 
 

 
Figure 9.6 Equivalent stress at (a) 10,000 hours and (b) 50,000 hours. 

Initial study of notch sensitivity of Grade 91 using mechanisms motivated crystal plasticity finite

element method
September 2019

ANL-ART-171 88



 

 
Figure 9.7 Equivalent stress at 100,000 hours. 

 
 

 
Table 9.2 Maximum equivalent stresses and creep damage of the core block*. 

*Based on the data from Table HBB0I-14.3A of [1], conservative estimation. 
 

 It is apparent that when the stress states were included, stress data in Table 9.2 are lower than 
those in Table 9.1 and the calculated creep damage is surely less than those stress-based time 
fraction method without stress state effects involved, so, application of Equation (2) will surely 
decrease the creep damage estimation conservatism introduced through elastic analysis. 
 
One of the features of Equation (2) is that when J1/Ss < 1, the exponential term in the equation will 
be less than 1, i.e., the Von Mise’s stress, which is already lower than or equal to stress intensity, 
can be further reduced before being applied for creep damage calculations, that will surely decrease 
estimated creep damage and reduce the creep life assessment conservatism. Figure 9.8 shows an 
example, at t = 1 second, when the full thermal load is applied and before the creep relaxation 
starts. Stress intensity in the fuel pin –fuel pin webs is higher than 38MPa (shown in Figure 9.8 
(a)),  but the J1/Ss at those regions are less than 1, shown in blue color in Figure 9.8 (b), so the 
equivalent stress based on Equation (2) decreases to around 22MPa (shown in Figure 9.8 (c)), 
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surely the creep damage will be smaller and the estimated creep life will be larger. It would be 
expected that J1/Ss could be regarded as one of the structure optimization parameters for future 
reactor design. 
 

 
Figure 9.8 (a) stress intensity at t=1s, (b) J1/Ss at t=1s and (c) equivalent stress at t=1s. 

 
9.2.3 Triaxiality Factors 
The creep damage calculation mentioned so far is stress-based time-fraction approach based on 
Robinson’s rule, in which the creep damage ω can be expressed as 
 

𝜔𝜔 = �
𝑎𝑎𝑠𝑠

𝑠𝑠𝑟𝑟(𝜎𝜎,𝑇𝑇)
            (3) 

 
Where t is time, tr is the time to rupture, a function of stress σ and temperature T. 
 
 An alternative way to calculate creep damage is strain-based ductility-exhaustion approach, in 
which the creep damage ω can be expressed as 
  

𝜔𝜔 = �
𝑎𝑎𝜀𝜀𝑐𝑐
𝜀𝜀𝑓𝑓∗

              (4) 

 
Where εc and ε*f are uniaxial creep strain and multiaxial creep ductility, respectively. 
 
Ductility exhaustion method for creep damage calculation has been adopted in EDF R5 code[4], 
and there is evidence that it provides more accurate results than stress based time fraction 
method[5]. Triaxility factor (TF) is one of the factors determining creep fracture strain ε*f at 
different stress states. TF is defined as 
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Multiaxial creep ductility models by Spindler[5], Cocks and Ashby[6], Manjoine[7], Yatomi and 
Nikbin[8] and Manjoine[9] all show that as long as the creep damage is through the mechanism of 
void nucleation, growth and connection, larger is the TF, lower is the ε*f ; in other words, two 
samples made of the same material,  the one with larger TF will show higher creep damage, even 
though the uniaxial creep fracture strains of the sample materials are the same. Till today, even 
though the modeling effects are for 3D TF situation, the experimental evidence supporting TF on 
creep life are all from experiments with 2D stress conditions, how the TF actually affects material 
creep life under true 3D stress condition and how to apply it to future ASME codes for reactor 
design is still under investigation (Mark Messner, 2019, personal communication). 
 
Figure 9.7 to Figure 9.9 show the TF contour plots. Through the 100,000 hours service life, at the 
core block boundaries, there are high TF regions due to boundary effects. In the other regions, the 
TFs at the webs between fuel pin holes are less than 0, i.e., TF doesn’t affect creep ductility and 
stress state’s effect on creep damage can be neglected. Since those regions are under compression 
at high temperature and inelastic deformation occurs due to creep, when the reactor cools down, 
they will under tension and cracking could be an issue and under cyclic operation, i.e., the cracks 
may grow, and lead to component failure, the webs between fuel pin holes need more attention 
during manufacturing and NDE, to ensure no defects, i.e., inclusions, small cracks, in those 
regions. In the regions around heat pipe hole walls with TF > 1 (in orange color), they will see a 
reduction in creep ductility and creep life, compared with uniaxial testing samples. Figure 9.2 to 
Figure 9.4 shows the stress intensities in those regions are low, so, creep damage may not be an 
issue. 
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Figure 9.7 TF at (a) 1 s, start of the holding and (b) 1,000 hours. 

 

 
Figure 9.8 TF at (a) 10,000 hours and (b) 50,000 hours. 

 
Figure 9.9 TF at 100,000 hours 
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10. Conclusions 
Based on the results of this analysis, the following conclusions are drawn: 

1. Secondary stress range (thermal stress + residual stress) is lower than twice the yield 
strength and the reactor will operation in the elastic regime or shakedown regime based on 
test B-1 of [1], and as the primary load (pressure load) is small, structural ratchetting is 
unlikely. 

2. When stress state effects are included in equivalent stress calculation based on 
Huddleston’s equation, the calculated creep damage will decrease and that reduces the 
conservatism introduced by other stress based time fraction approach. 

3. Ductility exhaustion is another approach for creep damage calculation, triaxiality factor 
(TF) plays an important role on determining multiaxial creep ductility. The current reactor 
geometrical configuration leads to some regions around heat pipe hole walls with TF > 1, 
i.e., make those regions easier to be damaged by multiaxial creep. 

4. The regions with TF < 0, i.e., those regions at the webs between fuel pin hole walls, are 
under compression at high temperature and creep deformation occurs, when the reactor 
cools down, those regions will be under tension and material cracking could be an issue. 
As service loads have not been specified, this issue will be left for future investigation. 
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• Ansys Mechanical, Version 19.2, Maintenance Release, UP20140420, Ansys Inc., 
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