Direct heating of chemical catalysts for hydrogen and fertilizer production using Microreactors

Hitesh Bindra (PI) | Associate Professor, Kansas State University

TPOC: Piyush Sabharwall (TAL, MRP)

Direct heating of chemical catalysts for hydrogen and fertilizer production using Microreactors

Team members Hitesh Bindra (PI), KSU Melanie Derby (Co-PI), KSU Caleb Brooks (Co-PI), Illinois Mark Ruth (Co-PI), NREL

Students

Zayed Ahmed (Graduate student) Bailey Strine (Graduate student) Anshuman Chaube (Graduate student)

Microreactor

Direct heating of chemical catalysts for hydrogen and fertilizer production using Microreactors

Project Objectives

- 1)Design MPBHX and compare other IHX alternatives for microreactor integration.
- 2)Exergy and techno-economic feasibility of microreactor integration for hydrogen production and ammonia/fertilizer production.
- 3)Investigate feasibility of microreactors for achieving sustainable agriculture.

- Moving ceramic particles have high volumetric heat density.
- Store heat for later use.
- Catalyst carriers to sustain thermochemical reactions

Project Timeline

Milestone	End Date
MPBHX concept design with calculations	9/30/22
Microreactor end-use compatibility	9/30/22
Design matrix and comparative analysis for different microreactor integration concepts	6/30/23
Hydrogen production potential	9/30/23
Overall MPBHX integration economic assessment	4/30/24
MAGNET demonstration guidelines	5/30/24
Sustainable agriculture-case study report	6/30/24

In-Progress

Moving Packed Bed Heat Exchanger (Design and Evaluation)

- Gaseous coolants-High Pressure drop-High parasitic Losses.
- Not too many liquid coolants compatible
- Ceramic granular flow simple design
- Compare options

Evaluation Plan Particles will be flown over electrical heater bank Thermal imaging response via IR transparent windows X-ray imaging of particle distribution

	FOM_ht ¹	FOM_pumping
Air	0.07	40,000
Helium	0.12	25,000
Molten-Salt (Chloride)	0.55	15
Packed bed	0.31	12.5

[1] Sabharwall et al., INL/EXT-11-21584

Hydrogen production using Microreactors

Replacing the standard Methane fueled heat supply with microreactor heat

JAEA HTTR (10 MW th) is used for baseline analysis

Steam Methane Reforming-Thermochemical process at 700- 800°C

Source of Emissions	CO ₂ emissions (Standard)	CO ₂ emissions (Nuclear)
Conversion of feed to hydrogen	0.75 kg/s	0.75 kg/s
Combustion for reforming reaction	0.19 kg/s	N/A
Combustion for steam production	0.28 kg/s	N/A
Total Emissions	1.22 kg/s	0.75 kg/s

Just replacing the heat component with Nuclear heat can reduce carbon emissions by 38%

