

(NEUP Project 19-17416) Experiments and computations to address the safety case of heat pipe failures in Special Purpose Reactors

Victor Petrov, Annalisa Manera, Pei-Hsun Huang, Taehwan Ahn DOE-NE Microreactor Program Winter Review Meeting 3.3.2022

Two papers for ANS – ATH22: Data analysis for the experimental campaign of vertical orientated HP#1 (FR = 50%) and HP#13 (FR = 25%)

The characteristic plot of HP operation conditions

- The sodium vapor temperature is defined as the average temperature at the adiabatic section; the upper and lower bound of the error bar were referred to the max. and min. heat pipe surface temperature
- The heat transfer rate on the y-axis represents the heat removal rate in the condenser
- The cooling conditions and heater input power effects on two HPs with different filling ratios (FR)
 - o The operation condition of heat pipe is confined by the theoretical viscous curve limitation
 - Significant end-to-end temperature differences of heat pipe as the operation condition approach to the viscous curve limitation
 - o Temperature oscillated in the case of HP with 50% FR unless the power increased above 1500 W

Test	Filling ratios (%)	Filler materials	Water flow rates (g/s)	Air flow rates (g/s)	Heating power (W)
Case 1-1	50	SiC powder	0	6.4	1,500 - 2,250
Case 2-1	25	SiC powder	10	4	500-2,000
Case 2-2	25	SiC powder	10	0.48 - 7	800

- The cooling conditions and heater input power effects on geyser boiling phenomenon of heat pipe with 50% FR
 - As the cooling efficiency decreases, the vapor temperature tends to increase under the given heat transfer condition, facilitating the isothermal operation of the heat pipe.
 - The geyser boiling usually occurred in the region near the viscosity limit, and completely disappeared under high heat transfer rate and sodium vapor temperature.
 - o In between, there is a transition region where intermittent geyser boiling occurs

Tests	Filler material	Cooling fluids	Flow rates (g/s)	Cooling efficiency	Heater power range (kW)
Case 1	SiC powder	Water	27 - 28	Highest	500 - 2.25
Case 2	Copper wire	Water	27 - 29	Very high	500 - 2.1
Case 3	SiC powder	Air	6.1 - 6.7	High	1500 - 2.25
Case 4	Copper wire (coarse)	Water	25	Medium	0.5 - 1.5
Case 5	Copper wire	Air	2.2 - 2.9	Low	0.5 - 1.5
Case 6	Copper wire (oxidized)	Air	1.2	Very low	0.5 - 0.75

The startup process and performance of a negative orientated heat pipe

- Experimental Apparatus
- B-side was arranged at the top side, which is against the gravity more than A-side
- Trace heater was installed in the adiabatic section and controlled by PID with the setting temperature slightly lower than the minimum temperature in the adiabatic section
- SiC powder was applied between the heat pipe and heat exchanger to enhance the cooling efficiency in the condenser

<Trace heater>

The startup process and performance of a negative orientated heat pipe with 25% filling ratio

The effect of initial sodium location in the heat pipe

The effect of inclination angle on the startup process of the heat pipe

Summaries

- The initial location of sodium in the heat pipe is crucial for the successful startup of the heat pipe, when solid sodium was initially located at the condenser under slightly negative inclination, fail startup was presented severe overheat in the evaporator region.
- When the solid sodium was initially located in the evaporator, the melting and solidifying process along the heat pipe during startup under negative inclination angles.

The startup process and performance of a negative orientated heat pipe with 25% filling ratio

The change of inclination during operation of heat pipe

Summaries

- Liquid reservoir formed in the condenser end under the heating power of 750 W with -7.4 deg and heating power of 1000 W with -10.4 deg.
- B-side at the evaporator was overheated under the heating power of 750 W with -9.3 deg and heating power of 1000 W with -10.4 deg.

Overheat at the B-side of evaporator

Formation of liquid pool at the A-side of condenser end

The startup process and performance of a negative orientated heat pipe with 25% filling ratio

The change of inclination and cooling condition during operation of heat pipe

MISOH1_2_012: As the input power \leq 1000 W, the heat pipe can be operated under -15 deg, but the temperature becomes not isothermal (overheated at the B side of the evaporator and subcooled at the A side of condenser end). On the other hand, severe overheat occurred as the input power approaches 1250 W under -14.6 deg

MISOH1_2_013: Comparing the steady-state temperature profile between pink and dark blue and between yellow and green. B side at evaporator was overheated under high heat transport rate with the same sodium vapor temperature. It is because more sodium is needed to support such a high heat transport rate so insufficient liquid sodium at B side lead to overheat

X-ray radiography measurement of a vertical orientated heat pipe with 25% FR

- Experimental Apparatus
 - □ Test section (MISOH1)
 - Vertical HP (90 deg)
 - *m_a*= 4 g/s
 - $m_w = 10 \text{ g/s}$
 - □ X-ray radiography system
 - X-ray tube 150 kV, 80 mA, 500 ms
 - Detector settings 360 frms, 300 Hz

Detector

Measurement preparation

Magnification factor was estimated based on the known dimension of injection tube on the heat pipe

Digitalization: 8.11 mm (Real: 8 mm)

Magnification factor (MF) = 1.01315

□ Calibration image was acquired by measuring a dummy tube with the same dimension of the heat pipe container

Dummy tube

Summaries

- No two-phase flow was observed under the heating power of 1500 W (only liquid pool presented)
- Intense two-phase flow was captured as the heating power proceeded to 2000 W

X-ray radiography measurement of a vertical orientated heat pipe with 25% FR

<#5>

The sodium vapor was mostly generated from the B-side during the transient process, which matches with the temperature readings (B side temperature was higher than A side in the evaporator)

<Around 50°C overheat at B side (left side on the images) under 2000 W where intense two-phase slug flow observed>

Test section upgrade

Structural upgrade

- Additional Aluminum profiles were installed on the test section to enhance the integrity of the structure and prevent the heat pipe from touching the heater during operation

New split (UX type) SiC heater for X-ray radiography measurement

- Although the heater strip artifacts presented on the X-ray images had been mitigated upmost by the developed image morphing tool in the Matlab environment, the heater with uniform surface is desirable because it makes the analysis of void fraction becomes possible

> For that, a DC power supply is required for controlling because of the difference of resistance range.

> The new heaters had arrived, and the DC power supply had been ordered.

New experimental campaign (In progress)

- Experimental Apparatus
- Trace heater was installed in the adiabatic section and controlled by PID with the setting temperature slightly lower than the minimum temperature in the adiabatic section
- SiC powder was applied between the heat pipe and heat exchanger to enhance the cooling efficiency in the condenser
- ✤ Experimental purpose
- Investigate the heat pipe performance under highest cooling efficiency with upgraded test section
- Boundary conditions:
- Air mass flow rate = 7.5 g/s, Water mass flow rate = 10 g/s, HP inclination angle = 90, 30, 15, 0 deg with HP#31 (similar filling ratio as HP#13)

<Upgraded test section>

<30 deg>

HP 15 ded

200

100

Ω

HP = 496 W, HR = 194 W

200

HR = 427 W

HX = 692 W

HX = 926 W

HX = 1138 W

W, HX = 1343 W HP = 2198 W. HX = 1502 W

HP = 2335 W HX = 1580 W

A-side B-side

Axial location (mm)

4 -4-

400

HX = 436 W

800

1000

HP = 2001 W, HX = 1319 W

HP = 2304 W HX = 1526 W

600

- Large end-to-end temperature differences of the heat pipe as operating near . viscous curve
- A sudden temperature surge at B-side of heat pipe (top side) under high heat . transfer rate with 30 deg of hp inclination angle, which is possibly resulting from the CHF or local dry-out

Heat pipe mini-core design

<Top View> Holes for Heat pipes

<Side View>

- Strong bottom insulation support
- Angle adjustment by two different height support at the condenser and evaporator sections

Thermal stress of the hex block and HPs

• Sliding support at the right side for HPs to allow thermal expansion

MoSi2 Heating element (3 mm OD (HZ) x 6 mm OD (CZ))

between slabs

<Conductive powder>

<Alternative: coarse pebble or beads>

Design of the condenser

•

Heat pipe mini-core design

<Temperature profile at the central line>

Summaries

- Although it was not converged very well from the central line temperature profile, especially near the gaps between the HPs, the average outlet temperature is not sensitive to the mesh base sizes
- The average outlet temperature is estimated to be around 372 K, based on the energy balance equation, the heat removal rate is calculated as follows:

$$\dot{Q} = \dot{m}C_p \Delta T = 0.1 \left(\frac{kg}{s}\right) * 1006 \left(\frac{J}{kgK}\right) * (372 - 300)(K) = 7243.2(W)$$

- The maximum required heat removal rate under horizontal HP is around 800 (W)*10 (HPs) = 8000 W, the result shows slightly insufficient heat transport capacity
- Another issue is the HP where directly facing the air inlet may be too cold for successful startup

 2^{nd} design of the condenser

- Apply fins on the surface of the heat pipe to enhance the heat transfer rate

<Fin geometry>

Mesh conditions:

2-3 mm base size for solid fins, prism layers were

applied in the solid-fluid interface, the mesh

Unit: inches

Heat pipe mini-core design (2nd design for the condenser)

Conclusion

- The data analysis for the experimental campaign of HP#1 (FR = 50%) and HP#13 (FR = 25%) indicates:
 - 1. the isothermal behavior of heat pipe is sensitive to the cooling efficiency as the operation condition approached the viscous limit curve
 - 2. Geyser boiling induced temperature oscillation increased the end-to-end temperature of the heat pipe. The geyser boiling, intermittent geyser boiling, and ideal regions were classified on the heat pipe performance characteristic plot
- The study of the startup process and performance of heat pipe under negative orientation shows:
 - 1. When the solid sodium was initially located in the condenser, the heat pipe failed startup as the inclination angles are close to horizontal
 - 2. When the inclination angle of the heat pipe decreased up to around -10 deg during isothermal operation, the B-side at the evaporator overheated and the liquid pool at the condenser end formed, heat pipe completely failed under -15 deg of inclination angle with the heating power of 1250 W
- The intense two-phase (slug) flow was observed in a vertical orientated heat pipe under 2000 W heating power through X-ray radiography measurement
- Aluminum profiles were utilized to enhance the structural integrity of the test section, new (UX type) split heater is going to be used for future X-ray radiography measurement to reduce the image artifact
- The MoSi2 heaters are planned to be used for the heat pipe mini-core facility (MISOH2), the concept of the design had been performed, in the design 10 heat pipes are arranged under horizontal orientation. The condenser capacity analysis was conducted, showing the required heat transfer rate of the system (8000 W) can be realized