High temperature moderator material

March 3, 2022

Chase N. Taylor, Idaho National Laboratory Eric P. Luther, Los Alamos National Laboratory

Objective

- Presence of moderator significantly decreases overall mass of fuel required in a microreactor by thermalizing neutrons and increasing probability of fission.
- Investigate materials performance, fabrication, and testing of moderators. FY22 work involved yttrium hydride (YH_x).
- High temperature moderator work in FY22 focused on two main technical activities:
 - Post irradiation examination of YH_x irradiated in the Advanced Test Reactor (ATR).
 - Neutron imaging measurements at the Los Alamos Neutron Science Center (LANSCE) to determine hydrogen diffusion with temperature.

Yttrium hydride microreactor moderators

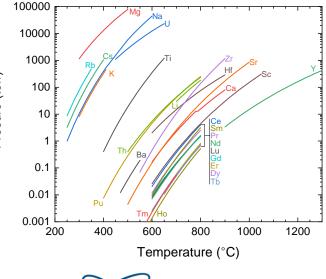
March 3, 2022

Chase N. Taylor, M. Nedim Cinbiz, Thomas A. Johnson,

Idaho National Laboratory

Eric P. Luther, Aditya P. Shivprasad

Los Alamos National Laboratory

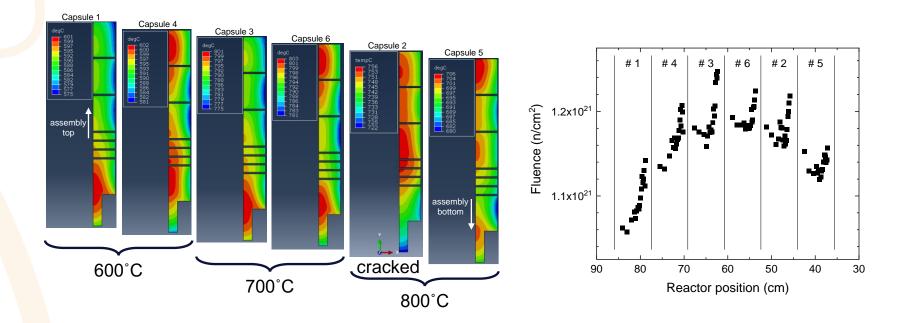

Introduction

- Advanced neutron moderators are required for microreactors due to the:
 - Lower fuel enrichment of HALEU (<20%) instead of high enriched uranium.
 - Compact size.
 - High efficiency/high temperature requirements
- Hydrogen is the best moderator as it has a low Z number.
 - Metal hydrides have exceptionally high hydrogen density.
 - Yttrium hydride YH has the highest temperature stability of metal hydrides.
- Legacy experiments proved that YH can be an extremely effective moderator, but no quantitative post-irradiation data exists for YH

Objective

• Obtain the properties of irradiated YH.

	Hydride	Attainable hydrogen density	
		10 ²² atoms H/cm ³	g H/cm ³
S. [°]	TiH ₂	9.1	0.152
	ZrH ₂	7.3	0.122
	LiH	5.8	0.095
	YH ₂	5.8	0.097
	ThH ₂	4.9	0.082
	H ₂ O	6.6	0.110
	ThZr ₂ H ₇	7.7	0.129
	ThTi ₂ H ₆	8.8	0.147

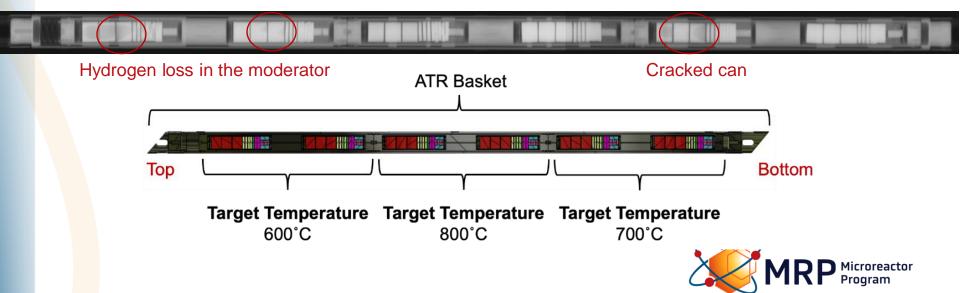


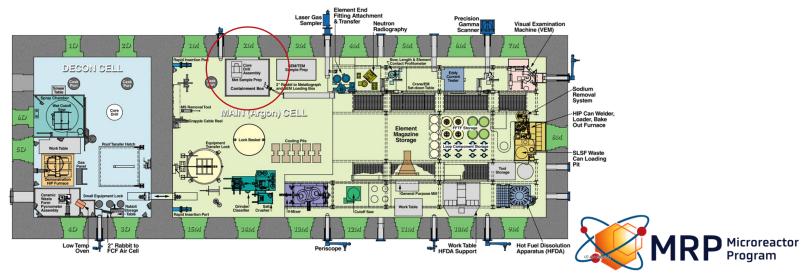
X. Hu et al., Journal of Nuclear Materials 539 (2020) 152335 C.N. Taylor, Journal of Nuclear Materials 558 (2022) 153396

(...since February 2021)

- February 19, 2021 Advanced Test Reactor (ATR) irradiation of yttrium hydride samples commenced
- April 19, 2021 ATR irradiation completed.

(....since February 2021)


- February 19, 2021 Advanced Test Reactor (ATR) irradiation of yttrium hydride samples commenced
- April 19, 2021 ATR irradiation completed.
- June 16, 2021 Irradiation assembly shipped from ATR to the Hot Fuels Examination Facility (HFEF) at Materials and Fuels Complex (MFC).


(...since February 2021)

- February 19, 2021 Advanced Test Reactor (ATR) irradiation of yttrium hydride samples commenced
- April 19, 2021 ATR irradiation completed.
- June 16, 2021 Irradiation assembly shipped from ATR to the Hot Fuels Examination Facility (HFEF) at Materials and Fuels Complex (MFC).
- September 2, 2021 Neutron radiography performed.

(....since February 2021)

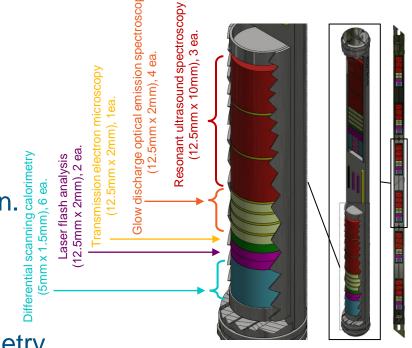
- February 19, 2021 Advanced Test Reactor (ATR) irradiation of yttrium hydride samples commenced
- April 19, 2021 ATR irradiation completed.
- June 16, 2021 Irradiation assembly shipped from ATR to the Hot Fuels Examination Facility (HFEF) at Materials and Fuels Complex (MFC).
- September 2, 2021 Neutron radiography performed.
- October 6, 2021 Irradiation assembly disassembled.

(...since February 2021)

- February 19, 2021 Advanced Test Reactor (ATR) irradiation of yttrium hydride samples commenced
- April 19, 2021 ATR irradiation completed.
- June 16, 2021 Irradiation assembly shipped from ATR to the Hot Fuels Examination Facility (HFEF) at Materials and Fuels Complex (MFC).
- September 2, 2021 Neutron radiography performed.
- October 6, 2021 Irradiation assembly disassembled.
- November 8, 2021 First batch of samples (19) transferred from HFEF to the Analytical Research Laboratory for extended PIE.
- January 31, 2022 Moving the samples from the contaminated KGTs to the clean KGTs.
- February 16, 2022 Gamma spectroscopy results on radioactive constituents.

Milestones

 M3 (11/30/2021): Transfer LANL capsules from HFEF to analytical laboratory


- Complete

- M4 (2/28/2021): Disassembly of the LANL capsules
 - Complete
- M2 (8/30/2022): Complete at least half of post irradiation examination activities for YH irradiated in ATR.
 - Higher than expected radiation and contamination levels are introducing significant delays.
 - Path forward to completion identified.

Future work

- Continue PIE activities
 - Non-destructive examination:
 - Optical
 - Dimensional
 - Volumetric
 - Mass characterization.
 - Fluence wire characterization. ¹/₈
 - Begin thermal characterization:
 - Hydrogen analysis
 - Thermal diffusivity
 - Differential scanning calorimetry
- FY23 PIE will include:
 - SEM, TEM, nanoindentaion, XRD, elastic properties, GD-OES.
 - Continue thermal characterization (including thermal expansion).
 - PIE on TZM foils.

