Advanced Fuels Campaign

Office of Nuclear Energy

Jon Carmack
National Technical Director
Advanced Fuels Campaign
March 28, 2017
The FCRD Advanced Fuel Campaign is tasked with development of near term accident tolerant LWR fuel technology and performing research and development of long term advanced reactor fuel options.

- Advanced LWR Fuels with enhanced performance, safety, and reduced waste generation
- Advanced reactor fuels with enhanced proliferation resistance and resource utilization
- Multi-scale, multi-physics fuel performance modeling and simulation
- Capability Development for Science-based Approach to Fuel Development
 - Advanced characterization and PIE techniques
 - Advanced in-pile instrumentation
 - Separate effects testing
 - Transient testing infrastructure
AFC High Level Technical Objectives (5-year)

- Identify and select advanced LWR fuel concepts for development towards lead test rod testing by 2022.
- Support the near term qualification and sourcing of driver fuel for near-term test and demo reactors.
- Complete the conceptual design for the baseline advanced reactor fuel technologies with emphasis on the fundamental understanding of the fuel fabrication and performance characteristics for recycle fuels.
- Achieve state-of-the art infrastructure that can be used to perform fuel research and development from a “science-based” approach accelerating further development of selected concepts.
- Integrate with the development of the predictive, multi-scale, multi-physics fuel performance code.
Integrating DOE and Industry Efforts

High Performance Accident Tolerant LWR Fuels
- Accident tolerant
- Ceramic and chromium coated zircalloys
- Multi-layer ceramic claddings
- High density ceramics
- High thermal performance

Fast Reactor Fuels
- Advanced manufacturing
- Actinide bearing
- Advanced performance

High Temperature Gas Reactor Fuels
- TRISO based fuel
- High burnup – high temperature
- Multi-layer fission production retention

DOE AFC is providing the U.S. nuclear industry with fuel and technology qualification, development, and testing resources.
AFC is supported by a large part of the U.S. nuclear complex.

National Laboratories
- INL (Idaho National Laboratory)
- Oak Ridge National Laboratory
- Brookhaven National Laboratory
- Argonne National Laboratory
- Los Alamos National Laboratory
- Pacific Northwest National Laboratory

Universities
- University of Florida
- University of Illinois
- University of Tennessee
- Texas A&M University
- Georgia Tech
- MIT

Nuclear Industry
- GE
- Westinghouse
- AREVA
- Exelon
- TVA
- Southern Company
- EPRI (Electric Power Research Institute)
University R&D plays an important role in advanced nuclear fuels and materials principally through the NEUP program

- Typically > 30 projects in a given year in AFC.
- Large number of lead and collaborating universities.
<table>
<thead>
<tr>
<th>NEUP Project #</th>
<th>Title</th>
<th>PI</th>
<th>Lead Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>16-10668</td>
<td>Microstructure experiments-enabled MARMOT simulations of SiC/SiC-based accident tolerant nuclear fuel system</td>
<td>Jake Eapen</td>
<td>NCSU</td>
</tr>
<tr>
<td>16-10221</td>
<td>Alloying agents to stabilize lanthanides against fuel cladding chemical interaction: Tellurium and Antimony studies</td>
<td>Jinsuo Zhang</td>
<td>Ohio State University</td>
</tr>
<tr>
<td>16-10667</td>
<td>A coupled experimental and simulation approach to investigate the impact of grain growth, amorphization, and grain subdivision in accident tolerant U3Si2 LWR fuel</td>
<td>Mike Tonks</td>
<td>Pennsylvania State University</td>
</tr>
<tr>
<td>16-10648</td>
<td>Microstructure, thermal, and mechanical property relationships in U and U-Zr alloys</td>
<td>Maria Okuniewski</td>
<td>Purdue University</td>
</tr>
<tr>
<td>16-10648</td>
<td>Oxidation and corrosion-resistant uranium silicide fuels</td>
<td>Jie Lian</td>
<td>RPI</td>
</tr>
<tr>
<td>16-10523</td>
<td>A science based approach for selecting dopants in FCCI-resistant metallic fuel systems</td>
<td>Indrajit Charit</td>
<td>Univ. of Idaho</td>
</tr>
<tr>
<td>16-10204</td>
<td>Phase equilibria and thermochemistry of advanced fuels: modeling burnup behavior</td>
<td>Ted Bessmann</td>
<td>Univ. of South Carolina</td>
</tr>
</tbody>
</table>
2017 ATF Primary Activities

- Year 1 of Phase II ATF Activities
- Initiate ATF-2 loop irradiation in ATR and establish loop irradiation in Halden
- Develop necessary experimental capability for transient testing
- Establish fuel handbooks for ATF technologies
- PIE of initial ATF-1 fuel rodlets
U.S. DOE-supported Industry Teams working to insert ATF into LWR condition loop irradiations

AREVA
- Cr coated Zr
- Increased fuel conductivity
- Additives
 - Chromia dopant

GE
- Develop advanced ferritic/martensitic steel alloys (e.g., Fe-Cr-Al) for fuel cladding to improve behavior under severe accident scenarios
- Objectives:
 - Characterize candidate steels
 - Study tube fabrication methods, neutronics, fuel economy, thermo-hydraulic calculations, regulatory approval path
 - Initiate ATR testing with UO$_2$ and two cladding materials.

Westinghouse
- Cladding concepts:
 - SiC and SiC ceramic matrix composites;
 - coated Zr alloys
- High density/high thermal conductivity fuel pellets
- First batch of U$_3$Si$_2$ pellets were sintered using finely ground powder
- Pellets were pressed using pressures of 6,000-10,000 psi and sintered at temperatures of 1400°C
2017 Advanced Reactor Fuels Activities

- Am distillation
- Np feedstock
- Remote fuel casting
- Advanced fuel fabrication
- Thermal/Fast comparison

KAERI

TerraPower
FY17 Budget

Total FY17 Operating ($56.9M) including FY16 CO
Bilateral International Collaboration
Includes Significant ATF Development

France
- Advanced core materials
- Joint support of Halden collaborative irradiations
- Transient Testing

European Union
- Three general INERIs currently underway with JRC-ITU

Japan
- Definition of attributes and metrics
- Coordination of technology research and development
- Coordination of facilities used for R&D

China
- Attributes and metrics
- Information exchange on R&D facilities
- Assessment of ATF Performance
- Collaborative testing opportunities

UK
- Active partners in ATF FOAs and IRPs
- Joint participation in ATF OECD/NEA
- Basic material properties of high density fuels

Others
- Canada bilateral under development
- OECD/NEA Expert Groups
- IAEA Expert Group on ATF
- Enlarged Halden Reactor Group

Russian Federation (currently on hold)
- Advanced LWR fuels and ATF
- Exchange of attributes and metrics
International Collaboration Includes Significant Advanced Reactor Fuels Development

France
- FUTURIX-FTA, MI Irradiation and PIE
- Fuel Performance Code Comparison
- Joint AmBB irradiations in ATR
- Cladding materials
- Trilateral transient testing

Japan
- Metallic fuel
- Oxidation kinetics

China
- Materials and fuels irradiation in CFTR
- Metal fuel fundamental properties

European Union
- Three general INERIs currently underway with JRC-ITU

South Korea (KAERI)
- Metal fuel fabrication technology and irradiation performance through the JFCS

UK – (under development)
- PIE technique development
- Characterization technique development
- Fuel performance modeling and simulation

Russian Federation (currently on hold)
- Materials and fuels irradiation in BOR60
- Characterization and PIE methods
- In-pile instrumentation and testing
- Nitrides

Others
- OECD/NEA, IAEA, GIF-GENIV projects
Summary

- Major Efforts for FY2017
 - Initiating ATF-2 Loop Irradiation
 - Rev 0 of Thermal/Fast Comparison
 - Establish handbooks with revision and update process

- Evolve
Update with new coversheet
Jon Carmack, 10/12/2015
Most documents coming available on OSTI

OSTI Document Links of Interest:

Overview of Accident Tolerant Fuel Program
http://www.osti.gov/scitech/servlets/purl/1130553

Accident Tolerant Fuel Performance Metrics
http://www.osti.gov/scitech/servlets/purl/1129113

2013 Accomplishments Report
http://www.osti.gov/scitech/servlets/purl/1120800

2014 Accomplishments Report
http://www.osti.gov/scitech/biblio/1169217

2015 Accomplishments Report
http://www.osti.gov/scitech/servlets/purl/1236849

2016 Accomplishments Report
Link in Dec 2016
Thank you
Integrating Industry and DOE Programs: Major Accomplishments and Impact

- **Metallic Fuel**
 - Established remote casting fabrication capability for KAERI CRADA.
 - Established new TerraPower proprietary fabrication line.
 - Irradiating and performing PIE on several TerraPower fuel experiments in ATR accelerating fuel qualification.

- **Accident Tolerant Fuels**
 - Currently irradiating LWR ATF fuel technologies for GE, Westinghouse, and AREVA in ATR.
 - Will initiate (late 2017) the first PWR condition loop irradiation in ATR for ATF vendor fuel technologies.
 - Currently working towards initiating transient testing in TREAT in FY18 to support all technology vendors.
 - Executing PIE on several ATF fuel specimen from ATR ATF-1.
 - Rapidly moving ATF towards 2022 LFA/LFR insertion.

- **TRISO Fuel**
 - Formal fuel qualification underway:
 - AGR-5/6/7 fuel particles and compacts have been fabricated.
 - Majority of AGR-5/6/7 test train components have been fabricated; awaiting fuel compacts to complete fab and load test train.
 - AGR-5/6/7 irradiation scheduled to start at the end of FY17 (194 UCO fuel compacts).
 - PIE on AGR-2 UCO and UO$_2$ fuel is approximately half complete. Confirms excellent performance of UCO fuel and demonstrates increased tendency for SiC degradation in UO$_2$ fuel at elevated temperatures.