Overview
- Goal: Measure critical fuel performance parameters with quantified uncertainty
- Advanced instrumentation is key to unraveling the complex multiphysics involved during transient irradiation experiments including development and validation of modern modeling and simulation tools.

- A science-based, engineering focus for nuclear fuels and materials development requires access to data streams beyond those historically available

- The success of advanced fuels and materials development programs hinge on well-coordinated and innovative instrument R&D covering full range of technical readiness levels

Development and Qualification
- The High Temperature Test Laboratory at INL is development hub
- Primary challenge is the integration of instruments into the test device and demonstration of interfaces and instrument performance under experiment conditions

Current Sensor Development
- Current development focused on Multi-SERTA deployment for Reactivity Initiated Accident (RIA) up to PWR conditions

Micro-Pocket Fission Detector
- Goal: Measure real-time neutron flux near test specimen
- State-of-the-art: SPND
- Requirements: compact, wide flux range, high temperature and pressure, ~ms response
- Approach: Adapt MPFD for TREAT application using pulse and current mode - R&D on sensor response to pulsed, high power flux

Infrared Pyrometer
- Goal: Measure cladding temperature with fast response and minimal impact on cladding (non-contact)
- State-of-the-art: Thermocouple
- Requirements: ~ms response time, non-contact, use in gas, water, steam
- Approach: R&D for commercial technologies and complete custom approach - R&D of effects of design and environment

Capacitive Void Sensor
- Goal: Detect departure from nucleate boiling (DNB) and void fraction
- State-of-the-art: Ultrasomics, temperature/pressure sensors
- Requirements: ~ms response, sensitivity to DNB/void fraction
- Approach: capacitance sensor

Instrumentation for Transient Testing
- Instrumentation used in in-pile transient testing:
 - Thermocouples
 - Ultrasomics thermometers
 - Pressure transducers
 - Linear Voltage Differential Transducer
 - Strain gauge
 - Dosimetry – wires, foils, etc.
 - Self-Powered Neutron Detector (SPND)
 - Acoustic sensors
 - Void sensors
 - Coolant column velocity
 - Flow meters
 - High-speed video
 - Hodoscope

Challenges and Opportunities
- Visualization:
 - visible, IR, advanced holography, ultrasonics
 - Miniaturization
 - less obtrusive, increased resolution/quantity
 - In-core electronics
 - Signal conditioning, A/D conversion
 - Enabling technologies
 - feedthroughs, hot-cell implementation, etc.

Collaborations
- NEUP Projects
 - Advanced Instrumentation for Transient Reactor Testing IRP – Advanced holography, diamond thermistor, distributed temperature fiber, HTIR, ultrasomics thermometer, nozzle probe, in-pile testing
 - Benchmarking for Transient Fuel Testing IRP – in-pile instrument testing at MTRR and TREAT
 - A Transient Reactor Physics Experiment with High Fidelity 3-D Flux Measurements for Verification and Validation
 - International collaborations
 - IRSN (France), CEA (France), Halden (Norway), NNC (Kazakhstan), KAERI (Korea)

Acknowledgments: HTT Laboratory Staff