This presentation regarding the Very Simple BWR is intended for discussion purposes only and the information it contains is subject to change. Accordingly, the information and data contained herein are merely conceptual and indicative. They do not take into account customer specific requirements, commercial terms with the customer or suppliers, or regulatory requirements. No warranties or guarantees are expressed or implied as to the accuracy of the estimates or the viability of any actual potential project.
In the near term ... which SMR can offer all of these?

Gas-comparable LCOE and lower capital cost

Safety

Proven components
Reactor design, fuel design and passive safety

Simplicity
Simpler to manufacture, construct, operate and maintain

VSBWR design goals
A dramatic reduction in scale and complexity vs ESBWR

VSBWR design principles

- 300 MW Small Modular BWR
- Designed to eliminate LOCA
- Design-to-cost’ ... think like a startup
- ESBWR design/licensing basis
- Underground/concrete security
- Natural circulation
- Isolation Condenser System cooling
- Small, dry containment
- Rethink control systems ... passive controls
- Design for ‘off-the-shelf’ TI/BOP
- Goal of 75 onsite staff

Compared to ESBWR:

>50% building volume reduction/MW
>50% less concrete/MW
VSBWR ...
Targeting competitiveness with gas near term

Simpler ... Smarter ... Lower cost while utilizing ESBWR's 30+yr development basis
Simpler and more affordable to construct

Single large ~20m circular or square shaft

- Conventional blast/dig/pour ... ~$4-6MM in 6-9m
- Common construction in other industries
- Earth provides natural protection from threats and lowers concrete volumes
- Power island ~ footprint of football field
- 900MWt size enables flexible water requirements ... e.g. dry-cooling towers
VSBWR compared to PWR SMRs

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>VSBWR</td>
<td>300MW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Est. Volume</td>
<td>15k m³</td>
<td>40k m³</td>
<td>unknown m³</td>
</tr>
<tr>
<td></td>
<td>250k m³</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Est. Capital Cost</td>
<td>$700MM</td>
<td>$650MM</td>
<td>$2B</td>
</tr>
<tr>
<td></td>
<td>$3B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Est. $/kW</td>
<td>VSBWR</td>
<td>$2,250/kW</td>
<td>$4,100/kW</td>
</tr>
<tr>
<td></td>
<td>$5,000/kW</td>
<td>5,100/kW</td>
<td></td>
</tr>
</tbody>
</table>

- 90% less volume than C
- >50% less volume than A

40-50% less capital cost / kW

Sources: Public Information
PRISM team ready for test reactor deployment

The right technology and team to make progress benefitting all advanced reactors

KEY:
SFR Sodium Fast Reactor
MSR Molten Salt Reactor
LFR Lead Fast Reactor
HTGR High Temperature Gas Reactor

Nuclear systems design engineering
Operations and maintenance
Development lead and project management
BOP design engineering and construction
Licensing and technical support