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Modeling and simulation can predict environmental 
effects in nuclear materials  

• Reactor environments are harsh (high temperatures, stresses, radiation, 
corrosive)

• As-fabricated materials must perform in these environments, and environmental 
effects can be lifetime-limiting (creep, creep-fatigue, IASCC, hardening…)

• Microstructures can significantly impact performance for a given material 
composition

• AM provides a huge range of microstructure space – challenge for incorporating 
into the nuclear industry

• Physics-based modeling and appropriate application of machine learning can 
help design materials, reduce the need to test materials, and accelerate testing 
and qualification



A cohesive, modern approach to predict 
environmental effects in nuclear materials

• Machine learning using density functional theory 
simulations to predict electronic structures of alloy systems

• Generalized workflow to predict thermodynamic and kinetic 
properties of multicomponent nuclear structural alloys 
using density functional theory, machine learning, and 
kinetic Monte Carlo

• Molecular dynamics-based quantification of irradiation 
damage metrics and comparisons of different defect 
recombination models

• MOOSE-based Stochastic Tools Module to support 
reduced order modeling, uncertainty quantification, etc.

• MOOSE-based crystal plasticity improvements and 
reduced order model development of bulk plastic behavior 

• Designing materials from 
the ground up

• Basis of simulations for 
ion/neutron irradiation 
acceptance

• Creep, creep-fatigue

Foundational work to support efforts for AM 316 SS



Machine learning using DFT to predict electronic 
structures of alloy systems

4

Atomic Structures Material Properties
of Interest

GAN

Atomic 
Structure of 

Interest

Material 
Property

of Interest

GAN 
(trained)

(Training)

=

• DFT is accurate but expensive, 
especially as you add alloying 
elements!

• This method is applicable to any 
property dependent upon spatial 
positions, mass, and electron 
density of each atom in the 
material

− Tensile strength, modulus, yield 
strength, defect energies, corrosion 
behavior, melting temperatures…



Practical example – calculating thermal conductivity of 
multicomponent alloy
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• U-Pu-Zr alloys as a challenging system with some experimental data but little modeling
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General workflow to predict thermodynamic and 
kinetic properties of multicomponent alloys

Low temperature phase diagram

Non-dilute solute effect on diffusionkinetic Monte Carlo simulation of precipitationDFT and cluster expansion

300 °C• Uses density functional theory, machine 
learning, cluster expansion and kinetic 
Monte Carlo Ion/neutron testing, 

accelerated testing, 
designing materials



Predicting energetics, diffusivities, and phases

Cr effect on atom and vacancy transport (300 °C)

Cr-rich cluster 
nucleation and 
growth (15Cr, 300°C)
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Practical applications to multicomponent Fe-Cr-Al alloys

FeCr-xAl mixing enthalpy
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Predicted Fe-Cr-Al phase diagram (300 °C) 

• Fe-Cr-Al phase diagram constructed by thermodynamics integration 
and Monte Carlo simulations



Providing realistic irradiation-induced defect quantities 
to model microstructure evolution

Molecular 
Dynamics

(High fidelity, low 
speed)

Binary Collision 
Monte Carlo 

without 
recombination (low 
fidelity, high speed)

MD informed 
Binary Collision 

Monte Carlo 
(Improved defect 
prediction, high 

speed)

• Equating different irradiation conditions requires fast 
and accurate calculations of irradiation-induced defects

• MAGPIE code: INL researchers developed a MOOSE-
based binary collision Monte Carlo (BCMC) code called 
MAGPIE

• MAGPIE contains a novel defect recombination model 
designed to address the overestimation of defect 
populations by BCMC

• We focus on molecular dynamics-based quantification 
of irradiation damage metrics and comparisons of 
different defect recombination models to test the 
MAGPIE recombination model

• Fast and accurate calculations of defect populations 
means microstructure evolution under different 
irradiation conditions can be quantitatively studied

Ion/neutrons regulatory acceptance, 
accelerated testing, material design



Are two recombination metrics actually equivalent?

• Spontaneous recombination distance: calculated from collision cascade simulations
• Recombination radius: calculated from diffusional simulations
• Typically, these two metrics are equivalent within statistical significance, but may vary for heavier 

elements 



Introduction to Stochastic Tools Module

• Provide a MOOSE-like interface for performing stochastic analysis on MOOSE-based models
• Sample parameters, run applications, and gather data that is both efficient (memory and runtime) 

and scalable
• Perform UQ and sensitivity analysis with distributed data

• Train meta-models to develop fast-evaluating surrogates of the high-fidelity multiphysics model
• Provide a pluggable interface for these surrogates



Material inversion determines material properties that 
reproduce experimental results
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Why is Crystal Plasticity Important &
What are the Challenges?

• Importance
− Fundamental in microstructure-based mechanical predictions
− Applicable to many kinds of deformation mechanisms and 

various microstructures
− Accelerate new material discovery and qualification 

• Challenges for MOOSE implementation
− Scattered in various code branches & bases
− Not user-friendly 
− Limited auxiliary input types (e.g., for microstructure, material 

parameters)
− Robustness and speed can be improved • Example grain structure and irradiation-induced 

microstructure distortion (A.M. Jokisaari, 2020) 

Modular User 
Friendly Robust

Creep, 
creep-
fatigue



Capability & Usability Improvements

.inp files
Exodus fileStatistical data

EBSD data

…

MOOSE-based 
simulation tools

• Expanded inputs by creating pipeline from Dream3D to 
MOOSE to generate microstructures from statistical 
information

• Added thermal expansion eigenstrain
• Improved robustness and efficiency

− Crystal orientation update
− Boundary condition bug during substepping
− Improved code structure for usability and 

modularity
− Reduced order model development to speed 

crystal plasticity solves

Prediction by NN can accelerate FEM prediction
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Stochastic Tools Module leverages power of crystal 
plasticity

q Sensitivity analysis
• Leverage stochastic tools module (STM) in MOOSE

• Crystal plasticity model is highly complex and includes a lot of parameters 
from different slip systems

• Use STM enables the possibility to examine the most important properties 
that has the most impact on the material response/behavior

q Surrogate model training
• STM also enables surrogate model training

• Polynomial chaos, Polynomial regression, Proper orthogonal decomposition, 
Gaussian process

• Successfully applied for heat conduction problems
• Produces accurate prediction of the final stress state for a CP model
• However, does not do well in capturing transient states

• Sobol indices (first and second order) for the stress. Material parameters 
are chosen from the slip (left) and twin (right) based deformation modes, 
respectively.  

• Polycrystal sample 
with 45 grains

• Example polynomial chaos surrogate model. Relative error of stress 
(@ t_end) for 1K samples. Similar error magnitude is observed for slip 
and twin rates.
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