Nuclear Energy

Introduction to NEAMS Fuel Modeling

Steven L. Hayes

Technical Lead, NEAMS Fuels Product Line

GAIN Advanced Reactor Modeling and Simulation Workshop #2
EPRI Charlotte Campus
January 24-25, 2017

Objective of the Fuels Product Line

- The objective of the Fuels Product Line is to develop and deliver a mechanistic (i.e., predictive) computational toolset for nuclear fuel design and/or analysis
 - <u>Near-term Emphasis</u>: oxide fuels for LWR applications; irradiation performance in quasi-steady state, operational transients, accident scenarios; integration/coupling with toolset being developed by the Reactors Product Line (via the NEAMS Workbench)
 - <u>Longer-term Plans</u>: additional fuel compositions/forms and reactor applications

■ Potential Applications

- <u>Current & Future LWRs</u>: better informed safety margins and operational constraints, power up-rates, burnup extension, spent fuel storage, accident-tolerant fuel analyses
- Advanced Fuels: accelerated design and qualification of new fuels

Multiscale Modeling Approach to Achieve Genuine Predictability

- Empirical models can accurately interpolate between data, but cannot accurately extrapolate outside of test bounds
- Goal: Develop improved, mechanistic, and predictive models for fuel performance using hierarchical, multiscale modeling

Atomistic simulations

Identify important mechanisms

 Determine material parameter values

Meso-scale models

Atomisticallyinformed

parameters

Degrees of freedom, operating conditions

Mesoscale-informed materials models

Predict microstructure evolution

 Determine effect of evolution on material properties

Predict fuel performance and failure probability

Fuel performance models

Multiscale Modeling Approach to Achieve Genuine Predictability

ls can accurately interpolate between data, but cannot **Atomistic Modeling Methods**

David Andersson

mprov ing hie

informed

parameters

polate outside of test hounds **MARMOT** Overview Yongfeng Zhang

redictiv odeling **BISON** Overview Jason Hales

Fuel performance models

Atomistic simulations

Identify important mechanisms

 Determine material parameter values

Meso-scale models

Atomistically-MARMOT

Degrees of freedom, operating conditions

Mesoscale-informed BISON materials models

- Predict microstructure evolution
- Determine effect of evolution on material properties

Predict fuel performance and failure probability

Thank You

BISON Update & Release

Tangential Stress (MPa)

Nuclear Energy

BISON 1.3

■ Update/release of BISON (09/30/16)

- Enhanced, mature, increasingly comprehensive capability to simulate oxide fuels for LWRs under quasi-steady state and off-normal conditions
- Developing capabilities to model:
 - TRISO fuels for gas-cooled reactors, LWRs, FHRs

Tangential Stress (MPa)

- Metallic and oxide fuels for fast reactors
- Plate-type fuels for research reactors

Engineering-scale Tool Development

- Development/validation of tools for predicting fuel performance at the engineering scale (e.g., pellet-resolved fuel pins)
 - Applicable to normal, off-normal, accident conditions
 - Make use of advanced computational methods
 - High fidelity geometric representations
 - Highly efficient solvers to enable fully-coupled, multiphysics simulations
 - Required interfaces
 - Interface/couple with meso-scale tools developed by FPL
 - Interface/couple with assembly-scale tools developed by RPL
 - Executable on desktop workstations and high performance supercomputers
 - Phased development approach
 - 1) Make immediate use of existing (largely empirical) models for material properties/fuel behavior, recognizing limits of applicability
 - Incorporate results from Lower Length-scale Model Development to enhance predictive power

Lower Length-scale Model Development

- Development/validation of tools for simulating meso-scale, microstructure evolution under irradiation
 - Atomic-scale simulations to enable meso-scale modeling
 - Tools to be used to
 - Develop fundamental material property/fuel behavior models
 - Up-scale to inform fuel performance simulations at engineering-scale
 - Reduce dependence on empirical correlations/models
 - Enable true predictability in compositional or operational regimes where little or no experimental data exists.

