SHARP Multiphysics

Tanju Sofu

Justin Thomas, T. K. Kim (Argonne National Laboratory)
Hans Gougar (Idaho National Laboratory)

Advanced Reactor Modeling and Simulation Workshop EPRI Charlotte Campus, Charlotte, NC January 24-25, 2017

Interrelated Phenomena over a range of Length and Time Scales

- Among all of reactor technologies being pursued by industry and DOE-NE R&D programs, modeling & simulation needs vary
- Reactor design and safety performance requires analysis of a wide range of length and time scales of interrelated physics
 - Reactivity response to minor geometric changes during transients in SFRs
 - Analysis of inherent safety and passive decay heat removal for large pebble bed or prismatic block HTGRs
 - Intrinsic connection between neutronics and flow field in liquid fueled MSRs
- Need for a mission-agile toolkit for reactor core analysis
 - Multiphysics, multiresolution, multiscale

SHARP Multiphysics Interface: SIGMA

- Scalable Interfaces for Geometry and Mesh-based Applications

 CGM: ACIS and OCC geometry models
 - MeshKit: Optimal mesh for complex geometries with extensions to use Cubit/Tetgen/Netgen
 - MOAB: Scalable array based for access and storage of mesh data on entities
 - CouPE: Coupled physics global nonlinear solvers based on PETSc for multiphysics solutions

SHARP – Multiresolution

Nuclear Energy

Neutronics with mixed local resolutions

- Model A Homogenized assembly model (as generally considered in applications of current deterministic codes, notably DIF3D-VARIANT)
- Model B Explicit representation of wrapper tube and inter-assembly sodium gap for all fuel regions
- Model C Explicit pin by pin representation of a single assembly in the inner core, leaving a full material homogenization in all other assemblies

SHARP – Multiresolution (cont.)

Nuclear Energy

EBR-II power distribution, note XX09 assembly in the middle

EBR-II simulations have demonstrated capability to mix fully heterogeneous regions ("pin-by-pin") with homogenized assemblies.

SHARP – Multiphysics SFR Core Deformation

SFR Core Deformation: Neutronics Homogenization

- For the SHARP simulations of core structural deformations, want to:
 - Explicitly model the duct walls
 - Homogenize the interior pin bundle to reduce computational cost
 - Not possible with conventional nodal transport tools (e.g. DIF3D)
- Approach cross-verified by comparing to MCNP for various homogenization approaches

	Sum of All Control Rod Worths (Δk)	
MCNP (1σ)	0.12061±0.00015	
PROTEUS (33 groups)	0.12042	
PROTEUS (70 groups)	0.12036	
PROTEUS (116 groups)	0.12065	

SFR Core Deformation: T/H Homogenization

- Deformation is driven by thermal expansion of the duct walls
- Explicit-geometry CFD is prohibitively expensive computationally
- Need to develop porous media models (~300x faster):
 - 1. Single-region: Uniform q", porosity, and inlet velocity
 - 2. Two regions: Different volumetric heat generation rates

3. Two regions: Distinct q", porosity, and inlet velocity

SFR Core Deformation: Temperature Prediction

Porous Media 1

Porous Media 3

Porous Media 2

Reference CFD (pin-by-pin)

- Peak wall temperature rise above 630K:
 - 1. 50 K (off by 2.5x)
 - 2. 34 K
 - 3. 18 K

Reference CFD: 19 K

Full ABTR coupled calculations

ABTR full core displacement in the y direction magnified by 100 x

VHTR Model

Nuclear Energy

■ Benchmark model based on GT-MHR

- 60° periodic boundaries
- 3 rings of fuel columns
- Control rod channels open in fuel columns
- Control rods fully inserted into reflector columns ("operating rods in")
- Burnable poisons biased towards inner ring to flatten power shape

J. W. Thomas, C. H. Lee, W. D. Pointer, and W. S. Yang, "Steady-State, Whole-Core VHTR Simulation with Consistent Coupling of Neutronics and Thermo-Fluid Analysis", Proceedings of ICAPP '10, San Diego, CA, USA, June 13-17, 2010

VHTR Model (cont.)

Neutronics model

- Global k-eff solution from multigroup CMFD problem with pin-cell mesh
- Coupled to 2-D planar MOC
 - Provides multigroup cross sections (equivalence theory)
 - Gets axial source from global CMFD
- Subgroup resonance treatment

■ CFD model

- Geometry includes fuel compacts, flow channels, and bypasses through gaps
- Coolant flow paths connected by common inlet and outlet plena
- 20M cells
- High-Re Realizable k-epsilon RANS

VHTR Multi-Physics Demonstration

J. W. Thomas, C. H. Lee, W. D. Pointer, and W. S. Yang, "Steady-State, Whole-Core VHTR Simulation with Consistent Coupling of Neutronics and Thermo-Fluid Analysis", Proceedings of ICAPP '10, San Diego, CA, USA, June 13-17, 2010

Ongoing Projects

- After release of SHARP in March 2016, RPL focus shifted to assessment and V&V of its component and multi-physics analysis capabilities
 - Systematic approach for DOE-NE ART program engagement in M&S
 - Joint modeling and experiment design with ART analysts (cultivate user base)
 - Set the foundation for future work based on assessed strengths/shortcomings
- SFR challenge problems and V&V opportunities
 - Hot-channel/pin factor analysis for AFR-100
 - SHARP-zoom (analytic magnifier)
 - Coupled system-CFD analyses (to support bilaterals with Japan, France, China)
 - Wire-wrapped SFR pin bundle benchmarks (ART FOA with Areva/TerraPower, EU-Sesame, bilateral/trilateral with Japan and France)
 - Reduced-order thermal stratification modeling for SAM

SFR Hot Channel Factors

- Corrections of nominal values to account for uncertainties on M&S, experiments, instrumentation, manufacturing tolerance, correlations, etc.
 - J. Muraoka, et al, Assessment of FFTF Hot Channel Factors, HEDL-TI-75226 (1976)
 - F. Bard, et al, FFTF Hot Channel Factors and Other Uncertainties Used in Safety Analysis and Life-Time Prediction for Fuel Pin Performance, WHC-SP-0608 (1990) Applied Technology
 - A. Friedland, CRBRP Core Assemblies Hot Channel Factors Preliminary Analysis, CRBRP-ARP-0050 (1980)
 - M. D. Carelli, et al, Hot Channel Factors for Rod Temperature Calculations in LMFBR Assemblies, Nucl. Eng. Design 62 (1980)
 - L. Briggs, Safety Analysis and Technical Basis for Establishing an Interim Burnup Limit for Mark-V & Mark-VA Fueled Subassemblies in EBR-II, ANL (1995)
 - R. Villim, Reactor Hot Spot Analysis, ANL, FRA-TM-152 (1985)
 - W. Yang, et al, Potential Gains through Reduced Hot Spot Factors, ANL Intra-laboratory memo (2005)
- Semi-statistical horizontal methods: Direct and statistical HCFs

SFR Hot Channel Factors: Direct HCFs

Factor	Description			
Power level measurement uncertainty	Defined as system design requirement			
Inlet Flow Maldistribution	 Uncertainties in assembly flow distribution due to flow maldistribution in lower plenum, manufacturing tolerances in internal structures and orifice, etc. 			
Intra-assembly Flow Maldistribution	 Uncertainties of flow distribution within assembly, which are due to the simplified model and applied empirical factors of sub-channel codes. 			
Cladding Circumferential Temperature	 Due to wire-wrap, the axial velocity and temperature around a fuel pin have strongly azimuthal dependence. HCF was measured at ORNL 7 and -19 pins tests and firstly evaluated by FATH0M-360 code (NSE. 64, 1977). 			
Physics Modeling	 There are many sub-factors under this category such as flux solver approximation, 2D synthesis method), etc. In CRBR, the lumped uncertainty of the power distribution was estimated using the ZPPR mockup of CRBRP (the C/E error is about +-2% except for specific locations) 			
Control Rod Banking	 Control rods are grouped and there is manufacturing tolerance (i.e., insertion depth is not identical), which introduces asymmetric power. 			

Highlighted in yellow are targeted HCFs that will be reevaluated via high-fidelity multiphysics methods

SFR Hot Channel Factors: Stochastic HCFs

Factors	Description
Reactor ΔT and Inlet Temp. Variation	• Uncertainties of inlet, outlet and ΔT due to deterioration of primary components
Inlet Flow Maldistribution	 Uncertainties of pressure measurement, manufacturing tolerance, orifice flow rate, assembly flow rate, etc.
Loop Temperature Imbalance	 Loop temperature imbalance affects inlet temperature distribution. CRBR allows cold leg loop-to-loop temperature imbalance of 34 F, which results in 4.9 F (2-sigma) uncertainty in inlet temperature
Wire Wrap Orientation	Analyzed by sub-channel code, COTEC, which is 1% uncertainty
Subchannel Flow Area	Uncertainties of rod dimension tolerance, bow, etc.
Film Heat Transfer Coefficient	Uncertainties of correlation, etc.
Cladding thickness and conductivity	Uncertainties of correlation, etc.
Coolant Properties	Uncertainties of correlation, etc.
Intra-assembly flow maldistribution	 Flow and temperature distributions were calculated using sub-channel code of COBRA, COTEC, and THI-3D.
Nuclear Data	Evaluation nuclear data library uncertainties
Criticality	Control rod depth error due to uncertainty in the prediction of criticality
Fissile Maldistribution	Fuel manufacturing uncertainties
Fuel Thermal Conductivity	 Uncertainties due to pellet diameter, fresh and irradiated fuel conductivity, porosity of swollen fuel, redistribution, etc.
Power level measurement	Instrument uncertainties (flow rate, temperature, etc.) and control systems.

SFR Hot Channel Factors: Impact on MW Temperature

- Potential impact of improved HCFs on peak mid-wall temperature estimation using CRBR HCFs, assuming:
 - No uncertainties on direct HCFs when they are evaluated via SHARP simulations
 - 50% reduction of statistic HCFs when they are evaluated via SHARP simulations

For AFR-100, 17°C MW temperature drop (5-7% power increase)

Factors		Coolant	Film	Clad	Peak MW Temperature
Inlet coolant temp. °C		395.0			
Nominal temperatures at peak MW temperature, °C		566.1	570.0	581.1	581.1
CRBR HCFs	Direct, °C	+198.3	+10.9	+11.7	632.4
	Statistical (2σ)		21.6		
With improved CRBR HCFs (tentative)	Direct, °C	+188.7	+4.7	+13.3	615.1
	Statistical (2 ₀)		18.4		

Planned activities: HTGR Challenge Problems

Steam Cycle HTR Primary Circuit Layout

- Core Power (200-600 MWt)
- Coated particle (TRISO) fuel embedded in graphite blocks (or pebbles)
- Helium coolant at ~4-7MPa –forced convection under normal ops

Circulator

HTGR Challenge Problems (cont.)

Nuclear Energy

Buoyancy-driven Core Channel-to-Plenum Flow Mixing

- Blower trip leads to loss of forced flow through core
- Buoyancy drives natural circulation through channels and riser
- Flow can be complex, unstable, and may, if unmitigated, lead to hot plumes impinging on upper plenum structures (fuel integrity is not threatened)
- Objective: Investigate the sensitivity of the plenum flows to channel geometry, number of channels, heating profiles, etc.

HTGR Challenge Problems (cont.)

Nuclear Energy

Break in primary boundary

- Leak or break leads to depressurization
- Helium displaces air; air may leak into the RPV, causing erosion of graphite (oxidation)
- Objective: Investigate mixing of helium and air in the cavity and the extent to which air can enter the RPV

Performance of Reactor Cavity Cooling System

- RCCS rejects parasitic heat losses and decay heat to the atmosphere
- Water-based systems exhibit complex flow behavior including boiling
- Objective: Investigate fluid-structure interactions and the sensitivity of fluid behavior to the number of riser channels per chimney

Planned activities: MSR Challenge Problems

Nuclear Energy

MSR designs with dissolved fuel have unique M&S needs that may not be met with systems analysis codes alone

- Heat is produced directly in the "coolant"
- Unique design with fuel circuit, an intermediate circuit, and the power conversion system
- Unique core configurations with potential recirculation and stagnation zones
- Reactivity management challenges (fissile/fertile inventory, sensitivity to local minor density variations in MSFR)
- Fission product/gas management, potential for online reprocessing
- No control rods in the core
 - Reactivity control by the IHX heat transfer rate, fuel-salt feedback coefficients, continuous fissile loading, and the core geometry
 - No requirement for controlling the flux shape
- Quick reconfiguration of the core geometry (gravitational draining) for passive safety

MSR Challenge Problems (cont.)

- Design and fissile inventory optimization (power vs. fuel salt volume and core geometry)
- Multi-physics modeling of thermo-chemico-fluid dynamics
- Limiting factors:
 - Heat exchanger capacity
 - Irradiation damage to the structural materials
 - For fast spectrum, breeding ratio vs. fissile inventory

MSR Challenge Problems (cont.)

- Opportunities to leverage SHARP toolkit for MSR M&S: Coupled neutronics + thermal-hydraulics simulations
 - High-fidelity, high-resolution T&H modeling for flow and temperature distributions using CFD
 - MC²-3 for thermal and fast fission cross sections
 - PROTEUS for neutronics with full-spatial resolution of potentially complex core geometry
 - REBUS or ORIGEN to support depletion analysis toward an equilibrium cycle
 - PERSENT for calculation of kinetic parameters and reactivity feedback
 - Delayed neutron source
 - Doppler feedback effect
 - Density feedback effect
 - System Analysis Module (SAM) for the intermediate circuit and power conversion system response.

MSR Challenge Problems (cont.)

Results for CEA Samofar MSFR design using coupled Monte-Carlo and OpenFoam codes (http://samofar.eu/project)

MSR Challenge Problems (cont.)

Nuclear Energy

Potential support for MSR accident analysis needs:

- Fuel circuit accidents
 - Loss of Heat Sink
 - Loss of Fuel Flow
 - Station blackout
 - Overcooling
 - Reactivity anomalies
- Draining system accidents (draining blockage)
- Balance of plant upsets
 - Steam generator tube rupture

ENERGY Overview of Warthog

Warthog serves to couple tools in the SHARP suite with those using the MOOSE Framework

Status on Warthog

Nuclear Energy

Currently supports PROTEUS -> BISON coupling

- Pin cell coupling has been demonstrated
- Assembly model work ongoing

BISON Mesh

PROTEUS Mesh with Initial Temp.

Temperature from BISON over one hour

Summary

- SHARP leverages advanced single-physics computational tools to solve multiphysics problems in a manner closer to first-principles
 - Provide insight into core/component design that can't be easily measured or accounted for with conventional tools/methods
- Aims is to capture the integral effects with multiresolution when the system codes provide information on key parameters with large uncertainty
 - Thermal-stratification in upper plena
 - Thermal-striping leading to thermal fatigue induced failures
 - Thermo-structural analysis of primary coolant boundary during accidents
 - Flow-induced vibrations
- High-fidelity multiphysics approaches are of interest for mature concepts to support commercial deployment
 - System codes coupled with appropriate sub-grid physics or higher-fidelity tools can also meet the needs of an advanced concept (next