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SHARP Neutronics Goal

� Perform high-fidelity deterministic neutronics simulation for any reactor types 
with complex geometry and phenomena

• Seamless coupling with the SHARP multi-physics simulation toolkit

• Modeling flexibility for various reactors in terms of geometry and cross sections

• Reasonable computational performance to meet users’ needs
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PROTEUS

�High-fidelity neutron transport code
• 2nd order discrete ordinate (SN) 

• 3D MOC : a rigorous formulation with 2D MOC 

+ Galerkin finite element based method in the 

axial direction, based on extruded geometry

• Can simulate geometric deformations

�Unstructured finite element mesh 
with DOFs >1012

�Parallelization in space, angle, and energy
• 90% strong scaling, 75% weak scaling

�Transient capability (adiabatic) 
• Improved Quasi-Static (IQS) option is being 

developed under a NEUP project

�NODAL solver option available MOC 
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MC2-3

�Neutron cross sections
• Resonance self-shielding with analytic 

Doppler broadening, ultrafine-group 

(~2000 groups) transport calculations

• Supports both conventional and 

high-fidelity codes

• Recently, updated thermal cross section

library and added a 3-D MOC capability

(same as PROTEUS-MOC)

• Substantial V&V tests against fast 

reactor benchmark problems as well as 

experiments including LANL, ZPPR, 

ZPR, BFS, Monju, EBR-II

�Gamma heating and cross sections
• Recently extended from 21 to 94 groups

BFS

Model
MC2-3 (∆k pcm)

1-D 3-D

Unit Cell -163 12

Wrapper Tube -310 5

EBR-II
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Other Cross Section Generation 
Options

�Cross section library
• Is generated using NJOY and MC2-3, 

based on the subgroup method or 

the resonance table method

• The cross section API generates cross 

sections inside PROTEUS on the fly

• Cross sections for thermal reactors

• Up to a few hundred groups

�Monte Carlo codes
• Cross sections for thermal or fast 

reactors are generated using Serpent 

or OpenMC Monte Carlo codes and 

converted to the format that PROTEUS 

or conventional codes can read
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Mesh Generation

�Can use any meshing tools that generate Exodus-II format
�CUBIT (developed by SNL)

• An option for very complex geometries such as ATR

• User must create geometry model as well as the mesh

� In-house meshing tools (User Friendly mesh)
• Automates meshing of standard reactor configurations

– Assembly ducts, pin cells, boundary layers

• No CUBIT or other external software is required

• Extrusion is the only option for 3D

CUBIT UFmesh
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PERSENT

�Reactivity Perturbation & Sensitivity 
Analysis 

�Spatial distribution of perturbations 
for a given reactor system
• Very useful in understanding how 

different parts of a reactor (core, blanket, 

reflector) contribute to the total reactivity 

worth

�High leakage or strong heterogeneity
• Diffusion theory shows considerable 

errors compared with transport results

• PERSENT provides both 3D diffusion 

and transport perturbation options

Diffusion        Transport

30% error in Sodium Density

Diffusion                Transport

15% error in Fuel Density
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Applications
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�ABTR Simulation with PROTEUS
• Multi-group cross section generation using MC2-3

• Two models in terms of heterogeneity

– Partially homogeneous assemblies 

(heterogeneous duct + homogeneous fuel)

– ~1% error on control rod worth relative to MCNP

– Less than 200 pcm error in k-effective

– Full spatial resolution

�Non-uniform structural deformation
• Is capable of detailed neutronics modeling any 

type of deformed geometry given from structure 

codes like Diablo or NUBOW

• Can be performed fully in-memory

Fast Reactors
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Fast Reactors (Cont’d)

�Multi-resolution calculation with 
mixed local resolutions 
• Model A - Homogenized assembly 

model (as generally considered in 

applications of current deterministic 

codes, notably DIF3D-VARIANT)

• Model B - Explicit representation of 

wrapper tube and inter-assembly 

sodium gap for all fuel regions 

• Model C - Explicit pin by pin 

representation of a single assembly 

in the inner core, leaving a full 

material homogenization in all other 

assemblies 

Model B

Model C
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Fast Reactor (Cont’d)
Shielding

�PGSFR simulation using PROTEUS-SN 
for shielding calculation
• Challenging with conventional codes to 

accurately estimate neutron fluxes at 

outside core regions 

• PROTEUS eigenvalue agrees well with 

MCNP within ~100 pcm for 2D problems 

and detailed shielding calculation is ongoing

IHX
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Advanced Test Reactor 
(ATR)

� Complex geometry and composition 
assignment

• Complex serpentine core design

• Very narrow fuel regions

• 93% enriched uranium in aluminum matrix

� Good agreement  in eigenvalue 
(< 300 pcm) and flux distributions (< 4.5%) 
at the fuel region between PROTEUS and 
MCNP

Water channel peaks

Thermal flux
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MCNP       Group 1

PROTEUS Group 1   (1MeV)

MCNP       Group 22

PROTEUS Group 22 (0.1eV)
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Transient Reactor Test Facility 
(TREAT)

�Experiment performed in early 
TREAT operation
• Minimum Critical Core (MinCC)

• Complex-geometry components

�Latest, best-documented historic 
TREAT experiments
• M8 power calibration experiment 

(M8CAL)

� IRPhEP benchmark problems

Core Case MCNP or
Serpent

PROTEUS 

(∆k, pcm)

MinCC 2D partial core 1.29939 (±15) -167

3D core 1.00490 (±19) 115

M8CAL 3D partial core 1.37609 (±16) 147

3D core 1.00497 (±18) 148

MinCCM8CAL

M8CAL
* simplified model

*
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RPI Research Reactor

� The only university research reactor in 
the US to use fuel rods similar to 
operating commercial LWRs

• Generated meshes using CUBIT + UFmesh

• Excellent agreement in eigenvalue between 

PROTEUS-MOC and Serpent

Core Case MCNP or 

Serpent

PROTEUS 

(∆k, pcm)

RCF 2D partial core 1.26661 (±9) -4

3D core 0.99337 (±10) 24



15

Very High Temperature Reactor 
(VHTR)

� PROTEUS-MOC is able to provide accurate 
solutions for neutron streaming through 
large CR holes

� Preliminary calculations on 3D fuel assembly 
problems indicated good agreement 
(< 90 pcm) with Monte Carlo solutions 
without introducing any methodology 
patches



16

Light Water Reactor

�C5G7 PWR Benchmark

• Pin power error in  the unrodded case: max 0.9%, RMS 0.2% 

Case MCNP PROTEUS ∆k, pcm

Unrodded 1.14308 (3) 1.14310 2

Rodded A 1.12821 (3) 1.12817 -4

Rodded B 1.07777 (3) 1.07750 -27
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Argonne Fast Reactor Codes

ENDF/B 
(Evaluated Nuclear Data Files) 

Fuel Management  

Strategy 

Reactor Design  

Parameters 

Plant Design  

Informa on 

Transient  

Scenarios 

MC2-3    
(Slowing Down Solver) 

DIF3D/REBUS-3    
(Flux Solver and  

Fuel Cycle Performance Analysis) 

PERSENT    
(Perturba on Theory) 

SE2-ANL    
(Steady-State Thermal Hydraulics) 

SAS4A/SASSYS-1    
(Transient Safety Analysis) 

Mul -group  

Cross Sec ons 

Power Distribu on, 
Deple on Data, etc. 

Temperature Margins, 
Flow Distribu ons 

Whole Plant Transient  
Responses 

Reac vity Feedback 

and Kine c Data 

DIF3D-VARIANT
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Molten Salt Reactor (MSR)

� Stability questions
• Impact of coolant density change during core transit

• Most designs consider activated fuel leaving the core 

• Loss of flow leads to positive feedback in the core

• Impact of multiple flow paths (blanket/core) on 

control system

� Updated a version of DIF3D to explore the stability 
problems associated with moving fuel

• Allows multiple coolant flow channels through reactor

• Tracks precursor distribution in-core and ex-core

• Different channel time delays for reprocessing bleed

� Analysis showed that fuel cycle behavior is not 
impacted by flowing fuel behavior

• keff can drop by 200 pcm depending upon flow

• Significant radiation source in out-flow 

reflector/shielding and ex-core piping

Flow Path

Delay neutrons do 

not impact the flux 

shape significantly

Each family shows 

drop in total source.

Reduces βeff

Reduces keff

Precursor Distribution

Stationary

Flowing
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Validation Database

�ZPPR-15 experiments
• Doppler measurement

• Axial expansion measurements

• Foil measurement 

• Neutron spectrum measurements

• Gamma dose measurements

• B-10 reaction rate measurements

• Control rod and sodium void worth measurements

BFS

EBR-II

ZPPR-15

�BFS experiments (I-NERI with KAERI)
• Control rod worth, sodium void worth, 

aluminum rod worth, axial and radial 

expansion measurements

�EBR-II experiments
• Core follow for 10 years (1984 – 1994)

• Depletion data
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Summary

�NEAMS neutronics tools
• Neutronics transport code: PROTEUS (SN, MOC, NODAL)

• Cross section generation tools: MC2-3, Cross section API, Monte Carlo

• mesh generation tool: UFmesh

• Perturbation and sensitivity analysis tool: PERSENT

• Software development QA : BuildBot

�V&V tests
• Fast reactors (ZPPR, ABTR) and various thermal reactors 

(ATR, TREAT, PWR (C5), RPI research reactor, VHTR, etc.)

� Improved ANL code suite
• MC2-3, DIF3D/REBUS, PERSENT

• Substantial V&V practices against ZPPR-15, EBR-II, etc.

• Being used by ART, TerraPower, KAERI for actual fast reactor design
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Software Status

� Software QA
• All codes are under the SVN version control, tracking source code changes and 

impacts on verification test suite

• Nightly regression tests using BuildBot (http://buildbot.net/) to ensure continued 

accuracy and performance

� Software availability / deployment / licensing
• All physics codes are export controlled (licensing required; free for government use)

• ANL TDC personnel supports for code licensing
– Elizabeth K. Jordan (ekjordan@anl.gov) at the TDC division or nera-software@anl.gov

� Required computational resources
• PROTEUS requires parallel machines with 500 – a few tens K processors

• All other codes can run in a serial mode on a regular Linux machine

� Training upon request
• Methodology / user manuals and training material are available 

• April 2015, July 2016 at ANL, Feb. 2017 at U. of Florida

� Contact: nera-software@anl.gov
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Questions ?

�PROTEUS Users
ART, CESAR, ORNL, INL, RPI, Purdue, 

Florida, Penn State, UM, KSU, NCSU, 

UMass-Lowell, Rnet-tech

�MC2-3 Users
ART, TerraPower, ORNL, INL, BNL, 

Berkley, MIT, Purdue, Georgia Tech, 

Tennessee, NCSU, Florida, 

(Korea) KAERI, UNIST, SNU

�PERSENT Users
ART, KAERI


