

### **SHARP Neutronics**

January 24, 2017

Changho Lee
Emily R. Shemon, Micheal A. Smith, Yeon Sang Jung
Argonne National Laboratory





### **SHARP Neutronics Goal**

#### **Nuclear Energy**

- Perform high-fidelity deterministic neutronics simulation for any reactor types with complex geometry and phenomena
  - Seamless coupling with the SHARP multi-physics simulation toolkit
  - Modeling flexibility for various reactors in terms of geometry and cross sections
  - Reasonable computational performance to meet users' needs





Neutronics



#### **PROTEUS**

#### **Nuclear Energy**

#### ■ High-fidelity neutron transport code

- 2<sup>nd</sup> order discrete ordinate (SN)
- 3D MOC: a rigorous formulation with 2D MOC
   + Galerkin finite element based method in the axial direction, based on extruded geometry
- Can simulate geometric deformations
- Unstructured finite element mesh with DOFs >10<sup>12</sup>
- Parallelization in space, angle, and energy
  - 90% strong scaling, 75% weak scaling
- Transient capability (adiabatic)
  - Improved Quasi-Static (IQS) option is being developed under a NEUP project
- NODAL solver option available









 $MC^2-3$ 

**Nuclear Energy** 

#### Neutron cross sections

- Resonance self-shielding with analytic Doppler broadening, ultrafine-group (~2000 groups) transport calculations
- Supports both conventional and high-fidelity codes
- Recently, updated <u>thermal cross section</u> library and added <u>a 3-D MOC capability</u> (same as PROTEUS-MOC)
- Substantial V&V tests against fast reactor benchmark problems as well as experiments including LANL, ZPPR, ZPR, BFS, Monju, EBR-II

#### ■ Gamma heating and cross sections

Recently extended from 21 to 94 groups



0.354 | 0.233 | 0.351 | 0.650 | 0.003 | 0.263 | 0.009 | 0.401 | 0.112 | 0.297 | 0.109 | 0.739 | 0.196 | 0.127 | 0.029 | 0.311 | 0.015 | 0.076 | 0.095 | 0.045 | 0.241 | 0.234 | 0.325 | 0.227 | 0.179 | 0.216 | 0.169 | 0.062 | 0.419 | 0.126 | 0.194 | 0.294 | 0.331 | 1.022 | 0.839 | 0.980 | 0.819 | 0.073 | 0.156 | 1.181 | 0.787 | 0.869 | 0.173 | 0.780 | 1.213 | 0.852 | 1.018 | 1.202 | 0.127 | 0.673 | 0.646 | 0.316 | 0.169 | 0.465 | 0.095 | 0.919 | 0.801 | 1.067 | 1.297 | 0.000 | 0.193 | 0.317 | 0.876 | 0.240 | 0.170 | 0.952 | 0.036 | 0.235 | 0.727 | 0.124 | 1.096 | 0.158 | 0.002 | 0.020 | 0.023 | 0.156 | 0.025 | 0.302 | 0.743 | 0.109 | 0.921 | 0.135 | 0.778 | 0.082 | 0.189 | 0.025 | 0.779 | 0.148 | 0.024

EBR-II





# Other Cross Section Generation Options

#### **■** Cross section library

- Is generated using NJOY and MC<sup>2</sup>-3, based on the <u>subgroup</u> method or the <u>resonance table</u> method
- The cross section API generates cross sections inside PROTEUS on the fly
- Cross sections for thermal reactors
- Up to a few hundred groups

#### **■ Monte Carlo codes**

 Cross sections for thermal or fast reactors are generated using Serpent or OpenMC Monte Carlo codes and converted to the format that PROTEUS or conventional codes can read









#### **Mesh Generation**

#### **Nuclear Energy**

- Can use any meshing tools that generate Exodus-II format
- CUBIT (developed by SNL)
  - An option for very complex geometries such as ATR
  - User must create geometry model as well as the mesh
- In-house meshing tools (User Friendly mesh)
  - Automates meshing of standard reactor configurations
    - Assembly ducts, pin cells, boundary layers
  - No CUBIT or other external software is required
  - Extrusion is the only option for 3D







NUCLEAR ENERGY ADVANCED MODELING & SIMULATION PROGRAM



#### **PERSENT**

#### **Nuclear Energy**

- Reactivity Perturbation & Sensitivity Analysis
- Spatial distribution of perturbations for a given reactor system
  - Very useful in understanding how different parts of a reactor (core, blanket, reflector) contribute to the total reactivity worth
- High leakage or strong heterogeneity
  - Diffusion theory shows considerable errors compared with transport results
  - PERSENT provides both 3D diffusion and <u>transport</u> perturbation options







# **Applications**





#### **Fast Reactors**

#### **Nuclear Energy**

#### ■ ABTR Simulation with PROTEUS

- Multi-group cross section generation using MC<sup>2</sup>-3
- Two models in terms of heterogeneity
  - Partially homogeneous assemblies
     (heterogeneous duct + homogeneous fuel)
  - ~1% error on control rod worth relative to MCNP
  - Less than 200 pcm error in k-effective
  - Full spatial resolution

#### ■ Non-uniform structural deformation

- Is capable of detailed neutronics modeling any type of deformed geometry given from structure codes like Diablo or NUBOW
- Can be performed fully in-memory









## Fast Reactors (Cont'd)

**Nuclear Energy** 

# ■ Multi-resolution calculation with mixed local resolutions

- Model A Homogenized assembly model (as generally considered in applications of current deterministic codes, notably DIF3D-VARIANT)
- Model B Explicit representation of wrapper tube and inter-assembly sodium gap for all fuel regions
- Model C Explicit pin by pin representation of a single assembly in the inner core, leaving a full material homogenization in all other assemblies









Fast Reactor (Cont'd)
Shielding

# ■ PGSFR simulation using PROTEUS-SN for shielding calculation

- Challenging with conventional codes to accurately estimate neutron fluxes at outside core regions
- PROTEUS eigenvalue agrees well with MCNP within ~100 pcm for 2D problems and detailed shielding calculation is ongoing





IHX





# **Advanced Test Reactor** (ATR)

- Complex geometry and composition assignment
  - Complex serpentine core design
  - Very narrow fuel regions
  - 93% enriched uranium in aluminum matrix
- Good agreement in eigenvalue (< 300 pcm) and flux distributions (< 4.5%) at the fuel region between PROTEUS and MCNP







NUCLEAR ENERGY ADVANCED MODELING & SIMULATION PROGRAM



# **Transient Reactor Test Facility** (TREAT)

# ■ Experiment performed in early TREAT operation

- Minimum Critical Core (MinCC)
- Complex-geometry components
- Latest, best-documented historic TREAT experiments
  - M8 power calibration experiment (M8CAL)

#### **■ IRPhEP benchmark problems**

| Core  | Case            | MCNP or<br>Serpent | PROTEUS (∆k, pcm) |
|-------|-----------------|--------------------|-------------------|
| MinCC | 2D partial core | 1.29939 (±15)      | -167              |
|       | 3D core         | 1.00490 (±19)      | 115               |
| M8CAL | 3D partial core | 1.37609 (±16)      | 147               |
|       | 3D core*        | 1.00497 (±18)      | 148               |







M8CAL



<sup>\*</sup> simplified model



### **RPI Research Reactor**

#### **Nuclear Energy**

- The only university research reactor in the US to use fuel rods similar to operating commercial LWRs
  - Generated meshes using CUBIT + UFmesh
  - Excellent agreement in eigenvalue between PROTEUS-MOC and Serpent

| Core | Case            | MCNP or       | <b>PROTEUS</b> |
|------|-----------------|---------------|----------------|
|      |                 | Serpent       | (∆k, pcm)      |
| RCF  | 2D partial core | 1.26661 (±9)  | -4             |
|      | 3D core         | 0.99337 (±10) | 24             |













# Very High Temperature Reactor (VHTR)

- PROTEUS-MOC is able to provide accurate solutions for neutron streaming through large CR holes
- Preliminary calculations on 3D fuel assembly problems indicated good agreement (< 90 pcm) with Monte Carlo solutions without introducing any methodology patches









# **Light Water Reactor**



### **Nuclear Energy**

#### **■ C5G7 PWR Benchmark**

| Case     | MCNP        | PROTEUS | ∆k, pcm |
|----------|-------------|---------|---------|
| Unrodded | 1.14308 (3) | 1.14310 | 2       |
| Rodded A | 1.12821 (3) | 1.12817 | -4      |
| Rodded B | 1.07777 (3) | 1.07750 | -27     |

Pin power error in the unrodded case: max 0.9%, RMS 0.2%







## **Argonne Fast Reactor Codes**

#### **Nuclear Energy**





## Molten Salt Reactor (MSR)



#### **Nuclear Energy**

#### Stability questions

- Impact of coolant density change during core transit
- Most designs consider activated fuel leaving the core
- Loss of flow leads to positive feedback in the core
- Impact of multiple flow paths (blanket/core) on control system

#### Updated a version of DIF3D to explore the stability problems associated with moving fuel

- Allows multiple coolant flow channels through reactor
- Tracks precursor distribution in-core and ex-core
- Different channel time delays for reprocessing bleed

#### Analysis showed that fuel cycle behavior is not impacted by flowing fuel behavior

- k<sub>eff</sub> can drop by 200 pcm depending upon flow
- Significant radiation source in out-flow reflector/shielding and ex-core piping



Delay neutrons do not impact the flux shape significantly

Reduces β<sub>eff</sub> Reduces k<sub>eff</sub>





### **Validation Database**

**Nuclear Energy** 

#### **■** ZPPR-15 experiments

- Doppler measurement
- Axial expansion measurements
- Foil measurement
- Neutron spectrum measurements
- Gamma dose measurements
- B-10 reaction rate measurements
- Control rod and sodium void worth measurements

### ■ BFS experiments (I-NERI with KAERI)

 Control rod worth, sodium void worth, aluminum rod worth, axial and radial expansion measurements

#### **■** EBR-II experiments

- Core follow for 10 years (1984 1994)
- Depletion data





ZPPR-15



EBR-II





## **Summary**

#### **Nuclear Energy**

#### ■ NEAMS neutronics tools

- Neutronics transport code: PROTEUS (SN, MOC, NODAL)
- Cross section generation tools: MC<sup>2</sup>-3, Cross section API, Monte Carlo
- mesh generation tool: UFmesh
- Perturbation and sensitivity analysis tool: PERSENT
- Software development QA : BuildBot

#### ■ V&V tests

 Fast reactors (ZPPR, ABTR) and various thermal reactors (ATR, TREAT, PWR (C5), RPI research reactor, VHTR, etc.)

#### **■ Improved ANL code suite**

- MC<sup>2</sup>-3, DIF3D/REBUS, PERSENT
- Substantial V&V practices against ZPPR-15, EBR-II, etc.
- Being used by ART, TerraPower, KAERI for actual fast reactor design





### **Software Status**

#### **Nuclear Energy**

#### **■** Software QA

- All codes are under the SVN version control, tracking source code changes and impacts on verification test suite
- Nightly regression tests using BuildBot (<a href="http://buildbot.net/">http://buildbot.net/</a>) to ensure continued accuracy and performance

#### Software availability / deployment / licensing

- All physics codes are export controlled (licensing required; free for government use)
- ANL TDC personnel supports for code licensing
  - Elizabeth K. Jordan (<u>ekjordan@anl.gov</u>) at the TDC division or <u>nera-software@anl.gov</u>

#### ■ Required computational resources

- PROTEUS requires parallel machines with 500 a few tens K processors
- All other codes can run in a serial mode on a regular Linux machine

#### ■ Training upon request

- Methodology / user manuals and training material are available
- April 2015, July 2016 at ANL, Feb. 2017 at U. of Florida
- Contact: <u>nera-software@anl.gov</u>





### **Questions?**

#### **Nuclear Energy**

#### **■ PROTEUS Users**

ART, CESAR, ORNL, INL, RPI, Purdue, Florida, Penn State, UM, KSU, NCSU, UMass-Lowell, Rnet-tech

#### ■ MC<sup>2</sup>-3 Users

ART, TerraPower, ORNL, INL, BNL, Berkley, MIT, Purdue, Georgia Tech, Tennessee, NCSU, Florida, (Korea) KAERI, UNIST, SNU

#### **■ PERSENT Users**

ART, KAERI

