

OVERVIEW OF THE MSR CAMPAIGN: EXPERIMENTAL DETERMINATION OF MOLTEN SALT PROPERTIES

MELISSA ROSE Salt Technologies Section Pyroprocess and Materials Development Department Chemical & Fuel Cycle Technologies Division Argonne National Laboratory

RELIABLE PROPERTY DATA REQUIRED FOR MSR DESIGN, LICENSING, AND OPERATION

- Predicting molten salt behavior during normal and transient conditions requires knowledge of property values over a range of temperatures and salt compositions, including contaminants and accumulating fission products
- Licensing a reactor requires quality data collected using standardized methods with known precision and accuracy
- Available data are not sufficient or of suitable quality as most developers are considering salt mixtures other than LiF-BeF₂-UF₄ for which reliable property values must be measured

CONTRACTOR Argonne National Laboratory is e U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

OBJECTIVES OF THE MSR CAMPAIGN MOLTEN SALT PROPERTY MEASUREMENTS

Generate high quality measurements of property values of fuelbearing molten salts to assist developers in designing, licensing and operating MSRs

- 1. Identify quality-affecting aspects of property measurement techniques, sensitivities, and measurement controls to achieve NQA-1 data quality
 - Assess the precision of measurements
 - Distinguish effects of uncertainty in salt composition and in the measurement
- 2. Determine property values of reference salts that can be used to compare methods and determine within-lab repeatability, lab-to-lab reproducibility, and bias in measurements
 - Develop consensus standard practices issued through ASTM-International
 - Identify and generate database for an approved reference material salt (ARM-salt)
 - Round Robin effort is supporting these tasks
- 3. Measure fuel-bearing systems using consensus standard practices controlled at the highest quality level
 - This data will be populated into the Molten Salt Thermal Properties Database (MSTDB) for developers to access

BENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

REQUIRED THERMOCHEMICAL AND THERMOPHYSICAL PROPERTIES

- Liquidus/solidus temperatures
- Salt boiling temperatures
- Solubility of FPs and impurities
- Heat capacities
- Density
- Volume expansion coefficients
- Surface tension
- Viscosity
- Thermal conductivity/diffusivity
- Emissivity

Radionuclide transport and retention processes considered in source term models for generic MSR

SALTS BEING MEASURED

- Gaps in the MSTDB are being targeted by measurements of uranium and plutonium bearing fuel salts
- Reference Salts FLiNaK, FLiBe, and NaCl-KCl
 - Confirming composition, impurity content and the impact of both on property values
 - Perfecting measurement methods
 - Quantifying data quality
- Round Robin National labs and Universities are measuring aliquots of the same batch of FLiNaK, and NaCI-KCI to quantify reproducibility of several methods

BENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

NATIONAL LABORATORY PARTICIPANTS

Property	Argonne	Oak Ridge	Los Alamos	Idaho
Phase Transition Temperatures	DSC	DSC	DSC	DSC
Heat Capacity	DSC	DSC	DSC	DSC
Solubility of FPs	Saturation Method	Press. Drop Method		
Vapor Pressure	Transpiration	Transpiration		
Density / Volume Expansion Coefficients	Hydrostatic Method	Hydrostatic Method & X-ray dilatometer	Neutron Radiography & Push Rod Dilatometry	Pycnometer & Hydrostatic Method
Viscosity	Rotating Spindle	X-ray Falling Ball	Dynamic Neutron Radiography	Rheometer
Thermal Conductivity/ Diffusivity	Laser Flash Analysis	Variable Gap	Laser Flash Analysis	Laser Flash Analysis
Emissivity	Under Development			
Surface Tension	Hydrostatic Method			Contact Angle

CODEPARTMENT OF Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

Argonne 🛆

QUALITY OF PROPERTY DATA

- Affected by
 - Salt composition
 - Environmental factors
 - Instrumental uncertainties
 - Analytical limitations
 - Calculation method

- Data quality assured by
 - Reagent purity and controlled batching
 - Controlled & monitored glovebox atmosphere
 - Reliable measurement procedures and device calibrations
 - Reliable reference and standard materials
 - Fundamental understanding

APPROACH TO QUALITY

- Salt composition
 - Use batched compositions to determine composition effects rather than measured compositions when possible
- Environmental factors
 - Require low and constant oxygen and humidity levels during data collection
 - Identify and quantify instrumental artifacts and uncertainties
 - Routine calibration checks of devices and instruments
 - Routine checks of measured responses of reference materials
 - Control chart calibrations and checks to detect long-term instability
- Analytical limitations
 - Replicate samples and replicate analyses
 - Reference materials
- Calculation method
 - Identify quality-affecting parameter values subjected to calibration checks
 - Use reference materials and standards for each parameter used for property determination

CONTRACTOR Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

DENSITOMETER DATA QUALITY

 Calculate molten salt density (ρ) from measured mass difference of Ni bob in the gas space and immersed in molten salt (Δm)

$$\rho = \frac{\Delta m + \frac{\pi D\sigma}{g}}{V_0 [1 + \alpha T]^3}$$

D = diameter of hanging wire

- σ = surface tension of salt
- g = gravitational acceleration
- V_0 = volume of bob
- α = thermal expansion of bob

- T = temperature
- Balance for mass
- Calipers for wire diameter
- Calibrated thermocouple for molten salt temperature
- Reference values for π, g, thermal expansion and density of Ni
- Determine σ from densities measured with different bobs

DENSITY MEASUREMENT BY HYDROSTATIC METHOD

Measured density values affected by:

- Surface tension
 - Surface tension (σ) at each temperature is calculated from density measurements made using two bobs of different mass and volume with support wires of different diameter.

 πD

3

surface tension term

 Δm

- Often not included in literature
- Preferential volatilization
 - Causes change in salt composition
 - Salt condensing on the suspension wire affects measurement
- Impurities (BeO)

DIFFERENTIAL SCANNING CALORIMETRY (DSC)

- Ramp temperature at constant rate and measure difference in heat flow through salt sample and empty crucible
- Temperature and heat flow read out are calibrated with metal standards
- Significant super cooling can occur, so only use heating data
- Three samples analyzed to check composition homogeneity
- Two analyses run with each sample to check system stability

Zn Reference Heat Flow

Tonset

10 Zn

-5

-10

-15

-20 L 400 Onset and

calibration

integrated heat flow used for

420

Temperature (°C)

440

Heat Flow (µV, -endo)

HEAT CAPACITY DATA QUALITY

Using reference salts to optimize method and minimize uncertainty.

Ratio Method:

st = sapphire reference with known C_p ; s = salt; cr = gold crucible

Measured C_p is affected by:

- Differences between masses of sample and sapphire
- Differences between masses of crucibles
- Melt transition occurring within the temperature range scanned
- Stability of conditions in the DSC

CONCERNERGY Arganne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

VISCOSITY BY ROTATING CYLINDER METHOD

- A hanging spindle is rotated at a speed N and the torque M required to maintain rotation is measured
- Method is applicable for laminar fully developed Newtonian Couette flow
- Dimensions are measured using calibrated devices
- Measurements with a reference fluid confirm proper operation

Side View of Spindle

BENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne U.C.

Top View of Spindle in Crucible

VISCOSITY DATA QUALITY

Silicone reference fluid measurements

Operation of the viscometer must ensure laminar fully developed Newtonian flow

 Torque measurements are collected at M multiple speeds to confirm Newtonian (linear) fluid flow

Calculated viscosity is affected by:

- Volume of fluid below and above spindle
- Turbulence
- Impurities (e.g., undissolved solids)

BENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

VISCOSITY RESULTS ON NIST CALIBRATION STANDARDS

- Each crucible/ball combination is calibrated with NIST traceable standards to get unique calibration factors "K"
- K is used to correct for factors that may influence the measurement, but are difficult to correct for individually:
 - Crucible roughness
 - Straightness
 - Ball roundness
- Replicate measurements demonstrate repeatability of technique

CAK RIDGE

Open slide master to edit

SUMMARY

MSR Campaign Molten Salt Property Measurements

- Generating high quality measurements of property values of fuel-bearing molten salts to assist developers in designing, licensing and operating MSRs
- Identifying quality-affecting aspects of property measurement techniques, sensitivities, and measurement controls to achieve NQA-1 data quality
- Determining property values of reference salts that can be used to compare methods and determine within-lab repeatability, lab-to-lab reproducibility, and bias in measurements
- Developing consensus standard practices issued through ASTM-International

BENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

ACKNOWLEDGEMENTS

- Financial support provided by U.S. Department of Energy, Office of Nuclear Energy
- Government License Notice -the manuscript has been created by UChicagoArgonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357.
- Portions of this work were conducted for US DOE Office of Nuclear Energy's Gateway for Accelerated Innovation in Nuclear Program (GAIN) for Transatomic Power
- Portions of this work were conducted by Oak Ridge National Laboratory which is managed by UT-Battelle LLC for the US Department of Energy

BENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

