TRISO-X Fuel Production Capabilities

GAIN Advanced Fuels Workshop

Dr. Dan Brown
Process Engineer

March 6, 2019
Outline

- Background on X-energy and TRISO-X
- Difficulties facing a category II fuel facility
 - Issue 1: HALEU availability and transport
 - Issue 2: Facility design
 - Issue 3: Licensing
 - Issue 4: Funding and scheduling
Overview and History of X-energy

X-energy is reimagining nuclear’s role in solving tomorrow’s energy challenges

- X-energy founded in 2009 by Kam Ghaffarian to address the world's most serious energy challenges and make a lasting contribution to clean energy technology
- Dr. Ghaffarian has committed ~$38.5M since X-energy inception to date
- Secured two Department of Energy (DOE), Office of Nuclear Energy Cooperative Agreements
 - Advanced Reactor Concept (ARC)15: Xe-100 Pebble Bed Small Modular Reactor: Solving Critical Challenges to Enable the Xe-100 Pebble Bed Advanced Reactor Concept ($53M total project)
Elements of Reactor and Fuel Programs

Reactor Development
- Xe-100 Conceptual Design
- X-battery Conceptual Design
- TCF CRADA
- Graphite Qualification
- Heat Transfer Modeling CFD
- Probabilistic Risk Assessment (PRA)
- MST Code Development
- NRC White Paper Development
- NRC Topical Report Development

TRISO-X Fuel Development
- Pebble Fuel Development
- Nuclear Criticality Safety Evaluation
- Fresh Pebble Transport Package Evaluation
- Conceptual Layout of Production Module
- Systems Engineering
- TRISO-X Facility Design (Preliminary/Final)
- TRISO-X License Application Development
- NRC Interaction
Issue 1: HALEU Availability and Transport
All advanced reactors require uranium enriched to >5% to achieve higher burn-ups and operational efficiencies

Issues
- Lack of uranium enriched to 20%, i.e. high assay low enriched uranium (HALEU)
 - HEU for NNSA stockpile not available to advanced reactors
 - No domestic enricher of HALEU
- Lack of HALEU transport packages available for commercial use
 - Existing commercial UF₆ packages not licensed to 20%
 - HALEU packages for test reactor and military fuel not NRC licenses
- Lack of fresh fuel transport packages
 - Various advanced reactor fuel elements may require more than one transport package

Solutions
- DOE-NE plans to sole-source HALEU enrichment contract to American Centrifuge Project (X-energy strategic partner) using DOE Portsmouth site located in Piketon OH
- Availability to co-locate enrichment and fuel fabrication processes eliminates the need for one type of transport packages
- TRISO as a common fuel element to multiple reactor designs presents the opportunity to have a single fresh fuel transport package

Under a DOE-NE cooperative agreement, X-energy is actively engaged with the NRC on these issues
Issue 2: Design a Commercial Facility
Transition from Pilot to Commercial

Develop kernel/coating/pebbles processes with natural uranium

Fabricate “Xe-6/7/8” pebbles for Irradiation with HALEU

Replicate equipment

Fuel elements for first advanced reactor customer to market

Additional TRISO based fuel elements

Continuous refueling support
Conceptual Design

- Completed August 2018
- Modular/scalable design
- Lean layout
- Adaptable to multiple fuel forms
- No visual impact at the site boundary
- Implements a number of first of a kind design and regulatory features
Preliminary Design

- 2019 Design Focus
 - Auxiliary systems that are ready to proceed & have little risk of substantive change
 - Manufacturing systems stable enough in conceptual design to begin detailed development
- Design & development conducted under rigorous quality program
- Configuration controlled processes and design
- Work organized by Engineering Service Orders (ESOs) within the overall project work breakdown structure
- 68 ESOs currently in document control system
- Design activities integrated with Nuclear Criticality Safety Evaluations and License Application Development
- End-in-mind with respect to conduct of operations
- Thorough and robust lines of communication between design, licensing, and safety analysis teams
- Substantial effort (22 Design Engineers, 12 NCS Analysts, 4 Process Engineers, 8 support staff)
- 3 year design schedule
Issue 3: Licensing a CAT II Nuclear Fuel Facility
License Application Development

- Regulatory framework – primary drivers
 - 10 CFR 70, “Domestic Licensing of Special Nuclear Material”

- NRC engagement
 - 8/8/2018: submitted initial Regulatory Engagement Plan (REP)
 - 8/24/2018: pre-application meeting to introduce project and discuss REP
 - 12/12/2018: pre-application meeting on Nuclear Criticality Safety approach
 - 2/11/2019: NRC team visited TRISO-X Pilot Facility at ORNL and Centrus site
 - Additional pre-application meetings will include:
 - Environmental reviews
 - Integrated safety analysis
 - Material control and accountability
 - Security plan considerations
 - **Q1 2021: target submittal of license application**
Site Selection Process

- Phase 1
 - 24 sites reviewed using 16 criteria
 - 3 sites moved forward

- Phase 2
 - 3 sites reviewed using 36 criteria
 - 1 site moved forward

- Phase 3
 - Evaluate preferred site in Environmental Report

Currently Here
Nuclear Criticality Safety Status

Currently Here

Solid NCS Foundation
- NCS Engineer Qualifications
- NCS Orientation to TRISO
- Design Team NCS Orientation
- NCS Program Description (Chapter 5 of License Application)
- NCS Program Procedures
- NCS Software Configuration Control
- SCALE Verification & Validation
- MCNP Shielding Verification & Validation
- NCS Scoping Calculations
- NCS Input for Concept Design

Preliminary Design & Licensing Support
- Preliminary Nuclear Criticality Safety Evaluations (PNCSEs)
- Design Interface
- License Application Support

Follow-On Support
- Complete Nuclear Criticality Safety Evaluations (NCSEs) based on final design
- Incorporate NCS hazards into ISA
- Complete Criticality Accident Alarms System detector placement calculations
- Complete NCS Program implementing procedures (e.g., oversight, training)
- Develop NCS training program (includes NCS engineer qualification training and basic NCS plant training)

ISA & ISA Summary

License Application Submittal

NCS Design Philosophy
NCS is integrated into the design from the onset of the TRISO-X project

NCS limits are based on Preferred Design Approach

© 2018 X Energy, LLC, all rights reserved
Nuclear Energy. Reimagined.
The approach for establishing NCS design requirements during the early design stage is through the development of Preliminary Nuclear Criticality Safety Evaluations (PNCSEs).

PNCSE includes the following:
- Description of operation
- Normal case (described in terms of parameters and limits on parameters)
- Hazard identification
- Hazard evaluation
- Proposed controls
- Assumptions
- Calculational/data needs

PNCSEs converted to final NCSE upon design completion

PNCSE BENEFITS
- Provides documented NCS analyses without having final design complete
- Provides mechanism to identify issues early in design to prevent major redesign if hazards identified later
- Provides mechanism to identify data and calculational needs for final NCSE
Issue 4: Funding and Scheduling
Commercialization Phases and Funding

TRISO-X development is divided into three phases:

1. Work under DOE ARC15 Cooperative Agreement (Lab and Pilot Facility, concept design)
2. Work under DOE iFOA Cooperative Agree. (Prelim/Detailed facility design, license app dev.)
3. Private debt financing of NRC license review/approval and TRISO-X facility construction
Thank you

Questions?

Please contact Dr. Pete Pappano, VP of Fuel Production, for more information: ppappano@x-energy.com