FUTURE FRONT END FUEL CYCLE?

Mining → U_3O_8

Conversion → UF_6

Enrichment

Fabrication

Deconversion

Reactor

UO_2

Metal

Triso

Salt

U_3O_8

UO_2

U metal

Other Materials

Spent Fuel

Plutonium
ENRICHMENT ISSUES

- Low Enriched Uranium < 20 wt.% U-235

Needs
- Fleet considering up to 8 wt.% U-235 – higher burnup improved economics
- Many, but not all, advanced reactors and an advanced fuel design for LWRs need up to 20 wt.% U-235

Challenges
- Domestic enrichment only goes to 5%
- How to justify investment needed to go to 20%?
- Where to obtain HALEU in the interim?
INDUSTRY HALEU NEEDS

- Values in MTU
- Current fleet uses about 2000 MTU/year
- Letter to Secretary Perry July 5, 2018
- Data from eight companies
- Not all ARs or advanced fuels need HALEU

<table>
<thead>
<tr>
<th>Year</th>
<th>Total</th>
<th>Cumulative</th>
</tr>
</thead>
<tbody>
<tr>
<td>2018</td>
<td>0.026</td>
<td>0.026</td>
</tr>
<tr>
<td>2019</td>
<td>1.506</td>
<td>1.532</td>
</tr>
<tr>
<td>2020</td>
<td>2.21</td>
<td>3.7</td>
</tr>
<tr>
<td>2021</td>
<td>4.2</td>
<td>7.9</td>
</tr>
<tr>
<td>2022</td>
<td>3.7</td>
<td>11.6</td>
</tr>
<tr>
<td>2023</td>
<td>18.8</td>
<td>30.4</td>
</tr>
<tr>
<td>2024</td>
<td>10.3</td>
<td>40.7</td>
</tr>
<tr>
<td>2025</td>
<td>12.4</td>
<td>53.1</td>
</tr>
<tr>
<td>2026</td>
<td>57.4</td>
<td>110.5</td>
</tr>
<tr>
<td>2027</td>
<td>73.6</td>
<td>184.1</td>
</tr>
<tr>
<td>2028</td>
<td>108.1</td>
<td>292.2</td>
</tr>
<tr>
<td>2029</td>
<td>111.8</td>
<td>404.0</td>
</tr>
<tr>
<td>2030</td>
<td>185.5</td>
<td>589.5</td>
</tr>
</tbody>
</table>
PATHWAYS TO DOMESTIC HALEU

- Surplus HEU not currently available
- Spent EBR-II fuel being processed
- Processing of spent ATR and navy fuel being pursued
 - Impurities in processed spent high enriched fuel
 - Affects reactor design and fuel fabrication
 - Cost and timing
- DOE enrichment demonstration with Centrus
- Potential URENCO USA investment
TRANSPORTATION ISSUES

Needs

• UF6 cylinders for commercial quantities up to 20%
 • 30B cylinder – 2200 kg UF6 – 5 wt.% limit
 • 8A cylinder – 115 kg UF6 – 12.5 wt.% limit
 • 5A cylinder – 25 kg UF6 – 100 wt.% limit
 • Version of 30B for 10% and 20% being designed

• Packages for different forms

Challenges

• Criticality design above 5 wt.%
• Impurities in processed spent fuel
CROSSCUTTING ISSUES

- Category III material is less than 10 wt.%
- Category II material is 10 to 20 wt.%
- Category I material is greater than 20 wt.%

Needs

- MC&A guidance for Category II material
- Security guidance for Category II material
QUESTIONS?
elr@nei.org

By Third Way, GENSLER