

Transforming Microreactor Economics Through Hydride Moderator Enabled Neutron Economy

Jason R. Trelewicz

Department of Materials Science and Engineering Institute for Advanced Computational Science Stony Brook University <u>www.stonybrook.edu/emrel</u>

For additional questions or discussion, please contact me at jason.trelewicz@stonybrook.edu

Supported by the DOE Nuclear Energy University Program Award DE-NE0009378

Project goals and objectives

Goals

 Demonstrate significantly reduced fuel costs through novel microreactor designs enabled by the technical advancement of engineered hydride ceramic composite moderators.

Objectives

- 1. Fabricate stabilized entrained hydride moderators for continuous operation at 800 °C through neutronics informed optimization
- 2. Enhance the performance of an annular, spherically-shaped, and reflected core through these moderators and integrated design optimization
- 3. Produce entrained hydride composites up to 10 cm in diameter via DCS and map the spatial distribution of microstructure and properties,
- 4. Measure H desorption from the entrained hydride composites with a migration model developed for hydrogen transport in MgO
- 5. Quantify the trade-off cost with savings realized through reduced uranium loading and other factors pertinent to microreactors.

Project leadership

Jason Trelewicz, Associate Professor, Stony Brook University

- Project lead with a focus on fabrication and scaling of the entrained hydride moderator and reflector composites optimized for hydride loading, stability, and scalability to increase the technology readiness level (TRL).
- Model development for BISON on parameterizing the diffusivity models based on the experimental results for H/D transport and stability.

Nicholas Brown, Associate Professor, University of Tennessee Knoxville

- Reactor physics calculations to quantify the performance of the entrained hydride composites.
 - → Represents a critical component to inform material development with the goal of defining an optimized a core configuration specific to these materials

Chase Taylor, Senior Staff Scientist, Idaho National Laboratory

- Thermal desorption spectroscopy experiments to determine H/D transport in MgO and stability of various hydrides/deuterides entrained in MgO.
 - → Represents important input for the H/D transport model and mapping overall stability of the hydride entrained compositions.

Structure and task integration

Optimized Core Configurations Stabilizing Entrained Hydride Composites for Microreactors and Uranium Loading Lead - Nicholas Brown (UTK) Lead – Jason Trelewicz (SBU) Refine core Large Format Entrained Hydride Composites neutronics Lead - Trelewicz (SBU) Design models for iterations H evolution to limit H evolution H/D Redistribution Under Steady State and Gradient Temperatures Design Co-leads - Trelewicz (SBU), Taylor (INL) optimization for transforming economics **Cost Comparison of Entrained Hydride and** Standard Moderator/Reflector Lead –Brown (UTK)

Restructured Milestones

- 1. Report on the fabrication of stabilized entrained hydride ceramic composites with hydride loading optimized based on the annular spherical core models and stability up to 800°C
- 2. Report on fuel cycle performance of the spherical cores optimized to exploit the enhanced neutron economy enabled by the hydride-entrained composite moderators and reflectors.
- 3. Report on hydrogen transport in the entrained hydride composites coupled with a hydrogen migration model for MgO and its impact on fuel cycle performance under transients.
- 4. Technical Report on Large Format Production of Entrained Hydride Composites

Stony Brook

Technical approach - reactor physics calculations

Background: thermodynamic limitations of ZrH_x

(a)

1200 1300

2.0x10⁻¹

(in

signal (a.

H

(1) As received

(2) 795 K 30 40 50 60 70 (3) 890 K 1013 K Peak V (4) 1013 K 1.5x10⁻¹ 1253 K (5) 1109 K 890 K 1.0x10⁻¹⁰ Peak I 795 K 1109 K Peak 5.0x10⁻¹¹ Peak $(3) \cdot (4)$. 0.0 1013 K ('n 1200 1300 500 600 700 900 1000 1100 800 Intensity (a. Temperature (K) 890 K 1400 1300 1200 Temperature (K) 1100 8 795 K 1000 ß 900 β+δ 800 700 As received ZrH 600 $\alpha + \delta + (\gamma)$ 500 400 1.2 0.0 0.2 0.4 0.6 0.8 1.0 1.4 1.6 1.8 2.0 30 40 50 60 70 H/Zr atom ratio 20 (°)

1109 K

Peak IV

- ZrH

+ ZrH,

+ ZrH

* ZrH

$$\epsilon \rightarrow \delta + \epsilon \rightarrow \delta \rightarrow \beta + \delta \rightarrow \beta$$

800

(1

900

Temperature (K)

1000

1100

2.0

1.8

1.6

1.4

1.2

0.8

0.6

0.4

0.2

0.0

atom ratio

HIZ

400°C

(1) 2 K/min

(2) 5 K/min

(3) 10 K/min

(4) 12 K/min

(5) 15 K/min

(6) 20 K/min

600

700

500

Hydride stability is intrinsically limited by thermodynamics, but what if we can suppress the desorption of hydrogen?

Ma et al. JAC 2015

Stony Brook University

* Zr

Ceramic composites as engineered moderator/reflector materials

<u>Manufacturing</u>: ideally no chemical reactivity between the two phases with processing temperatures that do not decompose either phase and offer a pathway to economy of scale.

Tuning the sintering temperature of MgO

Understanding the reduction in the sintering temperature

Controlled heating profiles to allow for Li to enrich particle surfaces

Reduced sintering temperature of MgO enables a fine, homogenously distributed δ -ZrH_{1.6} phase.

"Sintering" temperature (deg. C)

12

Next steps

- Optimize sintering conditions to entrain ZrH with minimal hydrogen loss as quantified through XRD phase analysis and hydrogen quantification with the demonstration of varying hydride volume fractions.
- Initial thermal stability experiments to map decomposition temperatures without encapsulation. (INL)
- Optimize hydride loading based on the reactor physics calculations, which have been initiated via the definition of an initial spherical compact microreactor core point design and code-set verification
- Quarterly report to be submitted by April 30, 2024
- Preparing a publication on the sintering mechanism