Microreactor AGile Non-nuclear Experimental Test bed / Helium Component Test Facility (MAGNET / He-CTF)

T.J. Morton

Functional Requirements

no National Laboratory

- Provide a general-purpose, non-nuclear test bed for prototype microreactor design evaluation
- Collect thermal-hydraulic performance data for prototypical geometries and operating conditions
 - Test article and flow loop temperature, pressure, and flow data for steady state and transient operations
 - Displacement and temperature data for design performance verification and accompanying analytical model validation (V&V)
- Enhance the technical readiness level of novel microreactor components, e.g., heat pipes or other passive heat removal technologies
- Identify, develop, and test advanced sensors for potential autonomous operation
- Evaluate interfaces between simulated microreactor components
- Demonstrate the application of advanced techniques, e.g., additive manufacturing and diffusion bonding, for microreactor applications
- Address knowledge gaps to support high-temperature reactor components and systems

Design Bases

Typical Test Article Operating

Parameters

- 600°C T_{OUT}
- 360°C T_{IN}
- 250 kW heat input
- 1.2 MPa
- 350°C air at 3 bar for shell side heat removal

General Design Bases

- Test article ≤ 750°C
- Piping designed to ASME B31.3 "Power Piping"
- Gases He, N₂, compressed air
- 2.0 MPa maximum operating pressure
- Flexibility to integrate other systems or install additional compressor
- 2 x 80 kW process heaters

Flow Diagram

MAGNET / He-CTF Process Flow Diagram

Recuperative Heat Exchanger (RHX-01)

RHX-01 (Recuperator)				
Parameter	Value			
Gas	Compressed N ₂			
Mass Flow Rate (kg/s)	0.938			
Design Pressure (bar _a)	22			
Design Temperature (°C)	650			
Cold Side				
Nominal Inlet Pressure (bar _g)	12			
Nominal dP (bar)	0.375			
T _{COLDin} (°C)	38			
T _{COLDout} (°C)	360			
Hot Side				
Nominal Inlet Pressure (bar _g)	10.625			
Nominal dP (bar)	0.375			
T _{HOTin} (°C)	600			
T _{HOTout} (°C)	Heat balance			

Advanced, diffusion bonded, compact platelet HX well suited to the application

- small flow channels
- custom designed and fabricated

ogram

Proprietary He-to-Air HX Testing

- He-CTF construction funded by NRIC
- Proprietary data no public sharing of analysis
- Analyzed effectiveness (ϵ) of RHX-01 instead

 $\epsilon = \frac{q}{q_{max}}$

- Ideal gas (He)
- Specific heat capacity ratio = 1
- Mass is conserved (closed loop)

$$\epsilon = \frac{T_{CO} - T_{CI}}{T_{HI} - T_{CI}}$$

0.14 1.1 1.0 0.12 0.9 0.8 0.10 0.7 output 0.7 output 0.6 RHX-01 Effectiveness Effectiveness Error 0.08 • NTU ŝŝ 0.5 0.06 ÷ Effe 0.4 0.04 0.3 0.2 0.02 0.1 0.0 0.00 0.00E+00 1.08E+05 9.72E+04 1.08E+04 2.16E+04 3.24E+04 Time (s)

RHX-01 Effectiveness

Calculate NTU

$$NTU = \frac{UA}{c_{min}} \qquad \dot{Q} = UA\Delta T_{LM}$$
Idaho National Laboratory

Advanced Heat Pipe Interface Heat Exchanger (HPIHX) NEUP with University of Wisconsin

- NEUP 21-24226 "Cost Reduction of Advanced Integration Heat Exchanger Technology for Micro-Reactors"
- Task 6 Test Prototype HPIHX at MAGNET
 - -~30 hours of testing

ho National Laboratory

- Temperatures up to 650°C
- Pressures up to 600 kPa
- N₂ flow rates up to 0.1 kg/s
- Phase II proposal submitted to continue this work

Installed HPIHX

Facility/System Improvements

- Thermal integration of MAGNET and Thermal Energy Distribution System (TEDS)
- Replace access scaffolding with permanent mezzanine
- Replace controls
- Integrate Brayton-cycle power conversion unit (PCU)

New Controls Cabinet with Opto22 Hardware

MAGNET-TEDS HX

- Thermal integration of MAGNET and TEDS for integrated energy systems demonstration and modeling validation
- Funded by Cross-cutting Technology Development Integrated Energy Systems (CTD-IES) program

Gas Side	Gas Side Oil Side		
Fluid	N ₂	Fluid	Therminol®66
Design Pressure	22 bar	Design Pressure	10.3 bar (150 psi)
Nominal Operating Pressure	20 bar	Nominal Operating Pressure	1 bar (14.5 psi)
Design Temperature	650°C	Design Temperature	375°C
Nominal Inlet Temperature	600°C	Nominal Inlet Temperature	325°C
Nominal Outlet Temperature	Heat Balance (calculated)	Nominal Outlet Temperature	225°C
Flow Rate	0.938 kg/s	Flow Rate	14 gpm

HX Selection Inputs

Dynamic Energy Transport And Integration Laboratory (**DETAIL**)

MAGNET-TEDS HX

Access Mezzanine

- Access to elevated instrumentation required temporary scaffolding with additional training, qualification, and maintenance requirements
- A permanent mezzanine increases safety and lowers annual maintenance and training expense

Access Mezzanine

Controls

- Replaced National Instruments[™] PXi hardware and LabView SCADA with Opto22 groov EPIC industrial controllers and Inductive Automation's Ignition SCADA
- I/O cards and devices more flexible in terms of types of inputs and outputs supported
- Easier integration with commercial PLC and external controls (e.g., digital twin)

Power Conversion Unit (PCU)

- Piping, structural, and electrical construction designs complete
- Requests for proposal sent to construction contractors
- Construction estimated to begin April 1 and complete by August 30
- Controls integration in September and shakedown testing in FY25

Conclusion

 Collaboration with industry and research partners demonstrated by successful testing in MAGNET / He-CTF

• Upgrades provide long-term cost savings and operational flexibility for demonstration support

