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Objectives 

• Develop a dynamic model of the Very Small, Long-Life 
Modular (VSLLIM) microreactor developed at UNM-ISNPS 
– A walk away safe microreactor design for generating 1.0-10 MW(t) 
– Cooled by natural circulation of in-core liquid sodium  
– Offers passive and redundant decay heat removal, redundant reactor 

operation and control  
– Factory assembled and sealed and requires no onsite storage of fresh or 

spent nuclear fuel 
– Offers passive auxiliary electric power generation after reactor shutdown, 

independent of on-site and off-site power sources 

• Use simulation results of VSLLIM dynamic model to train 
reactor controllers using ML algorithms 
– Generate data sets of reactor startup scenarios at different initial and final 

power for training neural networks of the ML algorithms 
– Implement trained neural network into a real-time reactor controller 

coupled to VSLLIM dynamic Simulink model 
– Test and validate accuracy of neural network for determining control rods 

displacements during simulated transients using the VSLLIM microreactor 
controller 
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Design Highlights: VSLLIM Microreactor 
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• 5.8 Full Power Year (FPY) lifetime at 10 MWth and > 92 FPY at 1.0 MWth . 
• Cooled by natural circulation of in-vessel liquid sodium during nominal operation and 

after shutdown, aided by in-vessel chimney and compact Na-Na heat exchanger (HEX) 
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VSLLIM: Control & Emergency Shutdown 
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VSLLIM: Simulink Transient Model 

• Couples 6-group point kinetics and Rx thermal-hydraulics models 
– Solves steep point kinetics equations using robust exponential matrix 

technique using the 7th order Padé(3,3) function 
– Solution efficient, accurate and stable independent of timestep size  

• Point kinetics reactivity feedback  
– Doppler broadening and thermal expansion of UN fuel, Na coolant, BeO 

shrouds, and B4C control rods 
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Simulation Results: Startup Transient 
VSLLIM dynamic model simulates startup from subcritical state to nominal 
steady state operation at different thermal power levels (1.0 -10 MW(t)) 
– First, Controller brings reactor steady state power to an Initial Setpoint P1  
– It subsequently increases reactor power to a final Setpoint P2  
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Neural Networks and ML Algorithm 

• Long Short-Term Memory (LSTM) algorithm 
– Implements PyTorch library LSTM functions in 

Python code 

• Hyperparameters 
– 5 Features: Rx Power setpoints, transient Rx 

power, and liquid sodium flow rate and inlet 
and exit temperatures. 

– One Target: Group A & C control rods position. 
– Neural Network: single layer of 5, 10, and 15 

neurons 
– Learning Rate: 0.001 
– Optimizer: AdamW with 0.1 weight decay 
– Lookback window: 20 (4 s) 

• Supplied ML Training data sets:  
– 797 sets of simulated startup transient, 

with more than 956 million data points for 
different Rx power set points, P1 and P2

: 

• P1: 0.5 - 9.75 MW 
• P2: 1.0 - 10.0 MW 
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Results: LSTM ML Training 
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Validation Loss

Training Loss

Neurons/Layer = 15, Training = 51, Validation = 9, Testing = 100 Neurons/Layer = 15, Training = 51, Validation = 9, Testing = 100

Neurons/Layer = 15, Training = 51, Validation = 9, Testing = 100 Neurons/Layer = 15, Training = 51, Validation = 9, Testing = 100

(a) Training Loss Convergence (b) Predicted Control Rod Displacement 

(c) Accuracy with Final Power P2 (d) Accuracy with Initial Power Setpoint P1 
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Ongoing & Future Work: Integrate AI Controller 

• Use LOBO Nuclear Cybersecurity (NCS) Platform, Developed by UNM-ISNPS in 
collaboration with Sandia National Laboratories (SNL).  
–Versatile for testing advanced digital I&C systems and cybersecurity analysis. 
–Couples physical hardware and emulated controllers to real-time Simulink model. 

• Integrate trained neural network into reactor control PLC 

• Begin testing the AI controller coupled to VSLLIM Simulink model for startup 
simulation sequences 
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The End 
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Happy to answer  
your questions 


