

Evaluation of Semi-Autonomous Passive Control Systems for HTGR

Type Special Purpose Reactors

Prof. Brendan Kochunas

Co-PIs: Victor Petrov, Nicolas Stauff, Changho Lee, Claudio Filippone

Microreactor Program Winter Review 3/06/2024

Outline

- Project Overview
- Project Highlights
- Project Metrics
- Summary and Questions

Project Overview

Objectives

- "The objective of the proposed work here is to develop and evaluate new passive autonomous control systems for high temperature gas reactor (HTGR) type SPR concepts."
- Investigating Passive Variable Flow Controllers
- Comparing with Control Algorithms for Control Drums
 - Contributed several new methods/capabilities here.
- The value of passive autonomous control systems will be evaluated against transient response to load following.

Cross Section of Core

Motivating Application: Autonomous Load Follow

• Daily load following example

NUCLEAR ENGINEERING & RADIOLOGICAL SCIENCES

- Xenon model in both MPC and system
- Control using two inputs: Group A 1 drum , Group B 4 drums
- Power ramp rate = $\pm 20\% P_r/min$

COLLEGE OF ENGINEERING

Automated Control

Can reactor components be designed to give a certain dynamic response?

- Reactor Dynamics are well known
 - Point Kinetics and two or three temperature equations
 - Spatial kinetics & high-fidelity

$$\begin{split} \delta\rho(t) &= \delta\rho_{cr}(t) + \delta\rho_{T_{inlet}}(t) + \delta\rho_{\dot{m}}(t) + \delta\rho_{Xe}(t) \\ &+ \alpha_f \big(T_f(t) - T_{f0}\big) + \alpha_m (T_m(t) - T_{m0}) \end{split}$$

- Demand More Power \rightarrow ? \rightarrow increase reactivity
- Demand Less power
 → ? → decrease reactivity

How good do model-based controllers have to be, and can they learn?

Passive Variable Flow Controllers

- Use bimetallic valve based on thermal expansion
- Temperature increases—flow area increases
- Temperature decreases—flow area decreases

Conceptual Illustration

Analogous to turbine throttling Concept could be implemented for valves for turbine bypass, compressor throttling, maybe inventory control

Project Highlights

• Problem

 Conventional PID control is model-free, and controllers for each component operate independently.

• Our Solution

NUCLEAR ENGINEERING & RADIOLOGICAL SCIENCES

Use state-of-the-art model-based controller

x(k+1) = Ax(k) + Bu(k)y(k) = Cx(k)

- Result
 - Works great. Pretty insensitive to model parameters, can be made arbitrarily accurate.

• Value

 Not much for just reactivity control. Value is in potential to extend to whole system, and ability to incorporate notions of component health. MIMO Control

	PID	LQR	H _{oo}	MPC	
Accuracy	Highly depends on tuning	Depends on tuning	Depends on tuning	Depends on tuning	
Easy to tune?	Difficult	Easy	Easy	Easy	
Able to handle constraints?	Not general	Not general	Not general	Yes	
Able to handle MIMO?	Difficult	Yes	Yes	Yes	
Calculation cost	Cheap	Expensive	Expensive	The most expensive	

Time to simulate 4000s with 10ms time step

Control Algorithm	Elapsed time (sec)
PID	0.09
LQR	0.16
H _∞	0.17
MPC	1.67

Model Predictive Control Sensitivities

48 60 72 84 96

48 60

Time (hour)

72 84

Time (hour)

	Tracking d	ifference (%)	Control cost			
Description	RMS	Max	Velocity (deg/s)	Acceleration (deg/s ²)		
3D core simulation	0.027	0.234	2.22E-02	5.55E-03		
2D core simulation (Base case)	0.017	0.170	2.03E-02	5.10E-03		
Standard MPC	0.180	1.196	1.81E-02	2.03E-03		
Position-dependent drum worth	0.019	0.166	2.03E-02	5.26E-03		
Drum worth -60%	0.106	0.790	9.95E-02	1.93E-01 7.54E-03 4.49E-03 4.06E-03		
Drum worth -30%	0.022	0.326	2.04E-02			
Drum worth +30%	0.031	0.172	2.03E-02			
Drum worth +60%	0.049	0.226	2.02E-02			
$\beta_i - 30\%$	0.020	0.145	2.02E-02	4.29E-03		
β_i +30%	0.019	0.267	2.03E-02	6.31E-03		
$\lambda_i - 30\%$	0.021	0.176	2.05E-02	5.66E-03		
λ_i +30%	0.016	0.165	2.04E-02	4.79E-03		
$\Lambda -30\%$	0.017	0.170	2.03E-02	5.10E-03		
Λ +30%	0.017	0.170	2.03E-02	5.10E-03		
$\alpha_f, \alpha_m - 30\%$	0.030	0.221	2.03E-02	5.10E-03		
$\alpha_f, \alpha_m + 30\%$	0.019	0.170	2.03E-02	5.11E-03		
$c_{p,f}, c_{p,m}, c_{p,c} - 30\%$	0.020	0.171	2.03E-02	5.10E-03		
$c_{p,f}, c_{p,m}, c_{p,c} + 30\%$	0.022	0.192	2.03E-02	5.10E-03		
Ramp rate 5%/min	0.012	0.097	1.23E-02	1.65E-03		
Ramp rate 10%/min	0.014	0.112	1.52E-02	2.78E-03		
Ramp rate 30%/min	0.021	0.384	2.59E-02	8.29E-03		
Power 100%→140%→100%	0.015	0.140	8.14E-03	1.21E-03		

108 120

- Fuel - Moderator

96

Coolant

- Drum Group A Drum Group B Xenon Sum

108 120

Model Predictive Control with Gaussian Process Regression for learning nonlinearities

• Problem

- MPC uses a linear state-space model, nonlinear variants are
- Our Solution
 - Use GPR to learn variation in state-space representation

• Result

• It works, but you have to solve the problem to obtain the solution.

• Value

• None. ML is dumb. Use your equations and math. Adaptive MPC is perfectly adequate.

$$\frac{dN_I(t)}{dt} = \gamma_i \Sigma_f vn(t) - \lambda_I N_I(t)$$
$$\frac{dN_{Xe}(t)}{dt} = \gamma_{Xe} \Sigma_f vn(t) + \lambda_I N_I(t) - \lambda_{Xe} N_{Xe}(t) - \sigma_{Xe} vn(t) N_{Xe}(t)$$

Hybrid Machine Learning and Perturbation Theory Method for Microreactor Control Drums

Problem

• For real time control how do I accurately estimate the reactivity of my control system for an arbitrary configuration of drums?

Our Solution

- Use analytic first order perturbation theory to get first order physics effects
 - Who remembers undergraduate nuclear engineering?
- Use (a somewhat complex) linear regression to correct for inherent assumptions of analytical model •

Result

- Run 70 whole-core Monte Carlo calculations to train model
- Calculate core reactivity to within 50 pcm of Monte • Carlo in milliseconds

Value

- Efficiency: Over 1,000 Monte Carlo calculations cases are needed to tabulate all possibilities ۲
- Quick calculations for optimization, sensitivity or UQ.

Full Model Evaluations

Full Model Evaluations

Multi-Objective Optimization of Microreactor Control Drum Operation

• Problem

• For real time control how do I accurately determine an optimal control drum configuration to meet reactivity requirements, peaking requirements, and do so robustly?

• Our Solution

• Multi-objective optimization with scalarization and moth flame optimization

• Result

- Capable of configuring 8 drums to match a desired reactivity, while satisfying quadrant power tilt ratio, even when you have a struck drum
- Value
 - Near real-time method for robust reactivity control of microreactors

Works with Stuck Drums

Optimal Control Drum Positioning Reached

Optimal solution solved with high-fidelity Monte Carlo (~50 pcm off critical QPTR within 0.001)

Analytic Stability Analysis

Problem

- How do we know the physics of the reactor is unconditionally stable over all possible inputs?
- Our Solution

COLLEGE OF ENGINEERING & RADIOLOGICAL SCIENCES

- Standard analytic methods of stability analysis: linear stability analysis, Nyquist plots, Bode Diagrams
- Result
 - HTGR-like MNRs are very inherently safe in terms of dynamics—primarily due to doppler feedback
- Value
 - Mostly pedagogical beyond answering very specific question above.

MRP Review – Kochunas NEUP Semi-Autonomous HTGRs

20 15

10

5

0

-5

-10

-15

-20

phase margin (deg)

-10

Imaginary axis

Integrated High-Fidelity Simulation with Model Predictive Control

Problem

 High-fidelity multiphysics simulation has some benefit to reactor design, most control system designs use point models. Can we extend simulation capability to incorporate control algorithms?

• Our Solution

 Couple MPC simulations with multiphysics transient HTGR simulation. Developed a simplified TH solver as well.

Result

- Successfully demonstrated capability, but still a long way to go.
- Value
 - Initial step for broader capabilities to codesign I&C systems with the rest of the reactor.

Cooled

Passive Variable Flow Controller

• Problem

• Can we devise a component that facilitates load following that uses concepts from inherently and passively safe components?

• Our Solution

- Design a valve that uses bimetallic vanes
- Use conventional CAE tools and explore pre-conceptual design space for materials and geometry.

• Result

 Candidate material selection. Evolution of geometry. Reasonable control for pressure drop and flow rate.

• Value

 Proof-of-principle simulation motivates continued research.

Heated

Normal

High thermal expansion meta

Project Metrics

Milestones

				1 year NCE						
	Yea	ar 2	-		Ye	ar 3				
1	Q2	Q3	Q4	Q1	Q2	Q3	Q4			
-										

Description
Assessment of local temperature reactivity response
Assessment of variable reflector reactivity envelope
Global and Local Reactivity Assessments for Passive Control Systems
Point Kinetics Model Development with MPC
Passive Feedback Model Development and Integration
High Fidelity Transient Simulations of the Multi-module HTGR Special Purpose Reactor
Comparison of Passive Feedback Control versus Idealized Control of Multi-Module HTGR Special Purpose Reactor
CFD and FEM Analysis of Passive Variable Flow Controller
Final Project Report

Toolr		10									541 5	
Task	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
1a												
1b												
1c												
2a												
2b												
2c												
3a												
3b												
4a												
4b												
4c												
5												
6												
UM Task						U	M/H	olos	Join	t Tas	k	
l	UM/ANL Joint Task					All Joint Task						

Year 1

8 Milestone Reports + Final report

Milestone Reports

Publications and Personnel

Personnel

- 5 students
- 2 research staff
- 1 visiting scholar
- ~5 journal (2 published, 1 submitted, 2 in draft)
 - D. Price, S. Kinast, K. Barr, et al., "A perturbationbased hybrid methodology for control drum worth prediction applied to the holos-quad microreactor concept," Annals of Nuclear Energy, vol. 168, p. 108 903, 2022.
 - D. Price, M. I. Radaideh, and B. Kochunas, "Multiobjective optimization of nuclear microreactor reactivity control system operation with swarm and evolutionary algorithms," Nuclear Engineering and Design, vol. 393, p. 111 776, 2022.
- 9 peer reviewed conference papers

- S. Kinast, D. Price, D. Sivan, *et al.*, "Sensitivity study of stability margins of htr-type microreactor," *M&C2023*.
- S. Choi, Q. Shen, C. H. Lee, *et al.*, "Preliminary results of load follow simulation for holos-quad microreactor using proteus and model predictive control," *M&C 2023*.
- V. Petrov and Y. Ding, "Passive temperature-sensitive flowcontrolling device based on bimetallic membrane deflection, fem, and cfd feasibility study," in *NURETH-20*, 2023.
- D. Price, S. Kinast, and B. Kochunas, "Error analysis of a hybrid control drum worth model," in *PHYSOR 2022*
- S. Kinast, C. Filippone, and B. Kochunas, "Stability Margin Analysis of the Holos-Quad Microreactor Design," in *PHYSOR* 2022
- S. Choi, S. Kinast, C. Filippone, *et al.*, "Comparative Study for Load-FollowOperations of the Holos Microreactor," in *M&C2021*
- S. Kinast, D. Sivan, S. Choi, *et al.*, "Frequency Domain Analysis of HTR-like Microreactors," in *M&C 2021*
- S. Choi, S. Kinast, V. Seker, *et al.*, "Preliminary Study of Model Predictive Control for Load Follow Operation of Holos Reactor," *Trans. Am. Nucl. Soc.*, **122**, 2020.
- D. Sivan, S. Kinast, S. Choi, *et al.*, "Linear stability analysis of htr-like micro-reactors," *Trans. Am. Nucl. Soc.*, **122**, 2020.

Summary

- 3 (+1) year \$400,000 project.
 - 8 milestone reports and final report
 - 14 peer-reviewed publications
 - 5 students and 3 staff (one visitor).
- Key scientific advancements
 - Rigorous demonstration and analysis of Model Predictive Control.
 - Its all physics based, no AI needed! (Some ML math methods can help)
 - Several possible extensions not demonstrated in this project.
 - Advanced control algorithms can be incorporated into state of the art high-fidelity multiphysics simulation tools for co-design and verification of I&C systems.
 - Advancements in algorithms for real-time controllers.
 - Proof-of-principle simulation analysis on passive variable flow controller.

Questions

Thank you!