

Thermal

Hydraulics aboratory

Cost Reduction for Advanced Integration Heat Exchanger Technology for **Microreactors**

Microreactor Program Review NEUP Project 21-24226

U.S. Department of Energy

Idaho National Laborator

Presentation Overview

- Project background and organization
- Previous work
- Air Brayton test specimen testing
- sCO₂ HX design optimization
- Heat pipe manufacturing, imaging, and testing

Interface Heat Exchanger

Objectives

- Development and validation of microreactor integration heat exchanger design tools
- Demonstrate potential cost-reduction/performance improvements in the context of an eVinci[™]like microreactor
- Obtain benchmark and validation data
- Demonstrate sub-size PCHE-based integration HX for sCO2 and air working fluids
- Train several students for nuclear industry

eVinci™ Micro-Reactor, Courtesy of Westinghouse Electric Company LLC

eVinci[™] is a trademark or registered trademark of Westinghouse Electric Company LLC, its affiliates and/or its subsidiaries in the United States of America and may be registered in other countries throughout the world. All rights reserved. Unauthorized use is strictly prohibited. Other names may be trademarks of their respective owners. © 2022 Westinghouse Electric Company LLC All Rights Reserved

PCHE-Based Interface Heat Exchanger

Potential advantages (Morton, 2020 [1])

- Mature technology.
- Additional geometric degrees of freedom.
- Plates provide additional surface area
- Low susceptibility to single channel blockage.
- Reduced axial temperature gradient.
- Uniform condenser temperature (per heat pipe) takes advantage of the entire condenser section.
- High pressure capability of PCHE geometry.

Concept of a PCHE-based integration heat exchanger

Project Organization

• Phase I

o Develop reactor, HX, and cycle modelso Optimize air Brayton HX

• Phase II

o Design and manufacture air test specimen

- o Demonstrate performance with N₂ at MAGNET
- Phase III
 - o Optimize sCO₂ Brayton HX
 - o Design and manufacture sCO₂ test specimen

o Demonstrate performance with sCO_2 at UW

	Quarter (relative to start of project)											
and a track of a second second	1	2	3	4	5	6	7	8	9	10	11	12
Task 1: Develop micro-reactor model			1		1		1.1					
Task 2: Develop integration HX model				-			1000					
Task 3: Techno-economic optimization			l									
Task 4: Procure test articles					1		1000	-			1.00	
Task 5: Demonstrate perf. w/sCO2 at UW				1.1					(marked		1	
Task 6: Demonstrate perf. w/N2 at MAGNET								1-1				

PHASE I Work

Modeling and Optimization

Thermal Hydraulics Laboratory

Previous Work (Design)

• PCHE design

- o 5 MW Special Purpose Reactor [2]
 - o 1224 heat pipes
- o 6-diffusion bonded blocks
- o 533 microchannels (0.8 m)
 - o Etched into 1.5 mm thick plates

Test specimen microchannel

PCHE microchannel

[2] J. W. Sterbentz, et al., "Special purpose nuclear reactor (5 MW) for reliable power at Remote Sites Assessment Report," 2017.

Previous Work (Modeling)

- Cycle model
 - Implemented in Engineering Equations Solver (EES) [3]
 - All non-HPIHX parameters are fixed to focus analysis on the heat exchanger
 - Vary HX geometries to maximize cycle efficiency and find optimal geometries
- Performed using AFHX and PCHE HX models
 HX Geometries

Previous Work (Modeling)

- Cycle model
 - Implemented in Engineering Equations Solver (EES) [3]
 - All non-HPIHX parameters are fixed to focus analysis on the heat exchanger
 - Vary HX geometries to maximize cycle efficiency and find optimal geometries
- Performed using AFHX and PCHE HX models
 HX Geometries

Previous Work (Results)

- Optimized HX geometries o Based on cycle efficiency
- Microchannel thickness o 1.0 mm
- Annular Gap o 1.9 mm

Thermal

lydraulics

aboratory

- PCHE increased cycle efficiency
 - o Due to lower approach temperature and lower pressure drop

PHASE II Work

Air Brayton Test Specimen

Thermal Hydraulics Laboratory

Air Brayton Test Specimen

- Diffusion bonded

 o 16 -1.5 mm 316 SS plates
- Machined heater holes

 Heater OD + 0.001"
- Instrumentation
 - o 4-pressure taps (2-ΔP measurements)
 o 2-TC's (1 in each header plenum)
 o 6-TC probes in
- Heaters

o 22-125 W cartridge heaters (69 W/in²)

Air test specimen

Cartridge heaters

Integration with MAGNET

- UW control panel
 - o Test specimen heater controlo Test specimen data acquisition
- MAGNET facility
 - o \dot{m} , T_{in} , P_{in} control o \dot{m} data acquisition

UW control panel

Test specimen in the MAGNET chamber

Testing Conditions

- Mass flow rate o 0.02-0.1 kg/s
- Inlet temperature o 330-550 C°
- Inlet pressure

 550 and 680 kPa
- Test specimen

 Max temperature 650 C°

Test ID	Description	Mass Flow Rate (kg/s)	Inlet Temperature (C)	Pressure (kPa)
1	Day 1 (50% power)	0.1	330	600
2	Day 1 (50% power)	0.07	330	600
3	Day 2 Low Temperature Low Pressure	0.08	330	460
4		0.065	330	460
5		0.035	330	460
6		0.08	330	460
7		0.08	330	460
8		0.065	330	460
9		0.05	330	460
10		0.08	440	460
11		0.065	440	460
12		0.08	440	460
13		0.1	330	600
14		0.085	330	600
15		0.07	330	600
16	Day 3	0.1	440	600
17	 17 Med Temperature 18 High Pressure 19 20 21 	0.085	440	600
18		0.07	440	600
19		0.1	440	600
20		0.035	330	460
21		0.02	330	460
22	22 23 Day 4 24 High Temperature 25 26	0.05	440	460
23		0.035	440	460
24		0.08	550	460
25		0.1	550	600
26		0.085	550	600

UW-MAGNET HPIHX Test Matrix

Heat Transfer Performance

• Approach Temperature

 $\circ \Delta T = T_{HP_{max}} - T_{out}$ o Percent difference 12%

HX performance versus model prediction

TC 3

TC 5

TC 7 609.239

599.547

598.811

TC 2

TC 4

TC 6

639,453

596.941

585.057

PT1

81.2

TC 1

C12 0 (11) 0 (11) 0 (11)

TC18 0 TC19 0 TC20 0 TC20 0

TC29 TC29 TC29 TC29 TC29

609,124

TC27 O TC28 Ø TC29 Ø TC39 Ø DP 2

543.689

MRP 2024 Meeting

University of Wisconsin - Madison. Thermal Hydraulics Group.

HHXT model

 $TC 6 = T_{HP_{max}}$

Pressure Drop Performance

- Channel pressure drop
- Percent difference 20%

10 r

0

Experiment vs. Model

MRP 2024 Meeting University of Wisconsin - Madison. Thermal Hydraulics Group.

10

Approach Temp. vs. Pressure Drop

MRP 2024 Meeting University of Wisconsin - Madison. Thermal Hydraulics Group.

Thermal

Ivdraulics

aboratory

 $\Delta P [kPa]$

PHASE III Work

sCO₂ Brayton Cycle HX

Thermal Hydraulics Laboratory

sCO₂ Brayton Cycle HX Design

- Limitations of Air Brayton design
 - o Cycle efficiency was highly dependent on pressure drop
 - o Limited channel geometry and heat transfer
 - o Stagnation regions and low Reynolds number
- sCO₂ HX design freedom
 - High operating pressure (~20 MPa) • Increased density \rightarrow lower pressure drop

$$\Delta P = \frac{1}{2} f_D \frac{L}{D_h} \rho v^2$$

$$\Rightarrow \dot{m} = \rho v A_c$$

$$\circ \Delta P = \frac{1}{2} f_D \frac{L}{D_h} \frac{1}{\rho} \left(\frac{\dot{m}}{A_c}\right)^2$$

sCO₂ Brayton Cycle HX Optimization Parameterize and optimize the internal T_{fuel}, Q_{reactor} Fixed Models Parameters channel geometry of the HPIHX for an Varied Output sCO2 Brayton cycle Reactor Paremeters Parameters Conduction Model Maximize heat transfer, minimize pressure Non-HPIHX drop Phiah Heat Pipe Model Component Parameters THP.C 1 - I HX Phigh THP.c mdot Geometries Fluid Inlet ΔΤ. ΔΡ **HX** Geometries HX Model Cycle Model Conditions Iterate ΔT and ΔP of Unit Cell m_{dot} n_{cycle}, m_{dot} ΔT and ΔP Channel Channel Design CFD Unit Cell HHXT Model Parameters of HX Nusselt Correlations Thermal

MRP 2024 Meeting University of Wisconsin - Madison. Thermal Hydraulics Group.

Hydraulics

aboratory

Channel Parameterization

- Create families of channel designs to parameterize
- Goals of internal channel geometries:
 - 1) Facilitate fluid movement towards the heat pipe wall to maximize heat transfer
 - 2) Be as nonrestrictive to the fluid flow as possible to avoid pressure losses
 - 3) Avoid stagnation points (sharp corners, void geometrical areas)

CFD Model (ANSYS FLUENT)

• Obtain approach temperature difference and pressure drop values for a parameterized unit cell

o Boundary condition: constant temperature, $T_{hp} = 650 \text{ °C}$

o Inlet conditions:

- o Constant mass flow rate
- Calculate Nusselt correlation, Nu = f(Re)
 - Hydraulic Diameter: $D_h = \frac{4V_f}{A_s}$ • Reynolds number: $Re = \frac{\rho v_D D_h}{\phi_f \mu} = \frac{\dot{m} D_h}{A_{in} \phi_f \mu}$ • Heat transfer coeff.: $h = \frac{\dot{Q}}{A_s(T_s - T_b)}$ • Nusselt number: $Nu = \frac{hD_h}{\nu}$

Preliminary CFD Results

- The baseline design is a bare-finned internal geometry
- Ran a dozen preliminary designs to prove their performance

Geometry	Approach Temp ¹ (°C)	Pressure Drop ¹ (kPa)	Max Solid Temp (°C)		
Bare Finne	d 101.6	0.284	554.3		
Containme Finned	nt 78.4	0.432	521.4		
Airfoil Finne	ed 82.0	0.411	524.8		

MRP 2024 Meeting University of Wisconsin - Madison. Thermal Hydraulics Group.

o Run model for different HX and sCO2 cycle configurations (th_i, H, P_{in}, ṁ) o Obtain optimal heat exchanger geometries

• Test specimen

herma

o Design for 20 MPa

Model and optimize

o Import CFD correlations

o Utilize advanced channel geometry

Next Steps – sCO₂

- o Investigate heat pipe heat exchanger interface
- o Test with UW manufactured sodium heat pipe

Overview of UW Heat Pipe Work

Manufacturing process development; testing and imaging HPs

HP Fill Process

- Vacuum bake-out HP at 800
 °C and 1E-05 torr
- 2. Circulate sodium at 400 °C through HP using cold trap to control oxide concentration (<5 ppm)
- Slowly drain HP of sodium and use X-ray system to monitor sodium level
- 4. Crimp/weld upper fill tube to seal
- 5. Pull turbo vacuum (1E-05 torr) on heat pipe
- 6. Crimp/weld lower fill tube for final seal
- 7. Use XRCT to verify fill volume

Heat Pipe Testing Facility

- Heat is applied to evaporator by resistive heating of Kanthal (FeCrAl) ribbon
- Blower drives air flow through a cooling jacket to remove heat from condenser
- Heat pipe installed on 450 kV Xray machine for imaging
- Detector can record up to 30 fps with 0.4mm resolution
- Externally-attached thermocouples measure temperature:

Heat Pipe condenser during start-up: 5x speed, 1500W

Condenser after heater is shut down: 5x speed

a. HP testing & instrumentation diagram

- Designed new HP to incorporate capillary tubes to house FODTS
 - Optimized laser welding process to seal capillaries into HP ends
- Developed process for manufacturing HP wicks
 - o Characterize wicks using bubble test
 - Communicating with vendors to produce wicks for us at scale
- Redesigned testing facility

Thermal Hydraulics Laboratory

• New HP is completed; currently working setting up for testing with FODTS installed

- Goals of present research:
 - Match high-resolution FODTS measurements to x-ray images to better understand heat pipe transient phenomena
 - Optimize radiography techniques & apply Dual-Energy Material Decomposition to determine void fraction in the wick
 - Operate HP in gravity-adverse conditions to induce dryout event in evaporator; capture dryout with x-ray images and FODTS measurements
- Future research goals:
 - o Investigate optimization of HP, including wick geometry, sodium fill volume, and effect of non-condensing species
 - o Characterize HP failure modes
 - o Integrate sodium HPs with sCO2 heat exchangers for testing

Questions?

MPR Meeting 2024 University of Wisconsin - Madison. Thermal Hydraulics Group.

March 2, 2024

WISCONSIN

31