

DOE Microreactor Program: High Temperature Moderator and Structural Material

May 12-13, 2021

Erik Luther LANL, Chase Taylor INL,

Theresa Cutler, Holly Trellue, John Carpenter, LANL

LA-UR-21-24233

High Temperature Moderator Material

Erik Luther LANL, Chase Taylor INL

Theresa Cutler, Holly Trellue, Caitlin Taylor, Aditya Shivprasad LANL Nedim Cinbiz, Keith Jewell, Ryann Rupp, INL David Wootan, PNNL

High Temperature Moderator Material

- Moderating material reduces fuel mass requirements in advanced reactors such as microreactors significantly
- Reactors are most efficient at high temperatures
- H is the ideal moderator but solid, stable forms for reactors are needed
- Yttrium hydride is the most thermally stable hydride known
- The focus is to perform activities to qualify YH for use as a moderator
- Efforts follow the needs identified in the moderator development plan

Moderator can decrease the fuel mass of low-enriched uranium by an order of magnitude and make it closer to high-enriched values

Shivprasad et al. "Elastic moduli of high-density, sintered monoliths of yttrium Dihydride" J Alloys and Compounds, 2021

Moderator Research Plan

Material Form	Thermophysical properties	Cladding/Containment
Stoichiometry	Phase formation thermodynamics	Hydrogen over pressure
Fabrication methods and processes	Phase-formation kinetics	H2 hermiticity
Purity	Heat capacity	H2 transport properties
Quality	Coefficient of thermal expansion (CTE)/density	H2 embrittlement
Operating Conditions	Hydrogen partial pressure	Chemical compatibility
Temperature range	Thermal conductivity	Neutronics
Fluence lifetime	Mechanical properties	H2 transport properties
Neutronics	Structural properties	H2 embrittlement
Kinetic/transient performance	Hydrogen mobility	Thermophysical properties

Ongoing/Planned - italics Completed - bold Still needed

Accomplishments

- Established large-scale fabrication capability (LANL)
- Placement of samples in Advanced Test Reactor (INL)
 - Irradiation completed on 4/23
 - Post Irradiation Examination planned in near future
- Integral critical experiment with yttrium hydride at National Criticality Experiments Research Center (NCERC - LANL)
 - Completed January
- Cladding/Containment work is underway and on schedule for the end of the fiscal year

Large-scale Fabrication Capability

- Direct hydriding and powder metallurgy methods
 - Up to ~10" and kgs of material
- Installed glovebox, milling, pressing and sintering/hydriding equipment
- Initiated tests to measure size effects on hydride kinetics

Design, fabrication, assembly of ATR irradiation experiment

- Motivation: YH has been used before but nearly no irradiation data is available in literature
 - Nuclear quality assurance 1 (NQA-1) certification: 23 Dec 2020
 - Irradiation start: 19 Feb 2021
 - Irradiation end: 23 Apr 2021
 - Post irradiation examination
 - Shipping: 9 Jun 2021 (projected)
 - Disassembly, visual and dimensional examination: July-Sept 2021

Thermal and neutronics analysis

- Variables: Temperature and YH fabrication method
 - 600, 700, 800ºC
 - Direct hydriding and powder metallurgy
- Temperature gradients within capsule vary by •
 < 26°C</p>
 - capsule 2 <34°C

- Average fast fluence ($E \ge 0.1 \text{ MeV}$)
 - 1 x 10²¹ n/cm2
 - 8% variation in neutron flux/fluence across all samples
- Melt wires to verify actual temperature in cans
- Two fluence wires in capsule

Post irradiation examination

- Most important:
 - Hydrogen stability with temperature and fluence
 - General integrity of samples
- Determine thermophysical/ mechanical properties
 - Swelling
 - Elastic properties
 - Heat capacity
 - Thermal diffusivity
 - Microstructure
 - Thermal expansion
 - Hardness

Critical Experiment

- Motivation
 - No critical experiments for validation
 - Ongoing differential measurements need validation
 - Expect Positive Temperature Coefficient
- Purpose: Validate temperature dependent feedback in YH₂ in a critical experiment
 - Demonstrate renewed capability to do electrically heated test at NCERC (no nuclear heating)
- Conducted at NCERC Jan 11-21, 2021
- 15 unique measurements, based on two different core column configurations (two and four cans of YH_{1.9})
 - Materials
 - HEU (C-discs)
 - Beryllium radial reflector
 - $YH_{1.9}$ canned in molybdenum
 - Alumina Heaters and Spacers

Alumina Spacer

(without welded lid)

Structural Materials

John Carpenter, Stu Maloy LANL Mark Messner, ANL, Yanli Wang, ORNL Sam Sham, Richard Wright, INL

Structural Materials

- Microreactor cores comprise the following materials:
 - Fuel + Cladding Structure Moderator (reduces fuel mass)
- Structural options include: solid metals, ceramics and composites
- Determine integrity of structural materials used in microreactors
- Completion of code cases for licensing of materials is required

Monolith Material	Pros	Cons	
Stainless Steel 316	Well proven and corrosion resistant	Neutron absorber, cannot handle temperatures > 600 C	Rod
Grade 91 Stainless Steel	Structurally preferred for reactors	Neutron absorber, not as well proven	
Molybdenum	Operated <u>></u> 900°C	Neutron absorber	
Aluminum Nitride (AlN)	Ceramic - slows neutrons down, decreasing fuel requirements	Structurally less stable than steel	Monolit Stainles
Silicon or Zirconium Carbide (SiC, ZrC)	Ceramic - slows neutrons down, decreasing fuel requirements	Structurally less stable than steel	Steel 31
Graphite	Proven ceramic material, decreasing fuel requirements	Potential C migration to heat pipes	¢

Structural Materials Overview

- <u>Identify</u> candidate materials of interest to industry that meet basic property and material requirements for a given application. (TRL <=3)
- ORNL/ANL/INL/LANL collaborative effort:
 - Material (manufacturing processes [TRL])
 - 316 SS (powder metallurgy (PM) [3] / additive manufacturing (AM) [3])
 - Purpose: Applicability of current code requirements to new manufacturing processes
 - Grade 91 (wrought [5] / AM [2])
 - Purpose: Provide material option with enhanced high temperature strength / higher creep strength (thinner ligaments)
 - Molybdenum Alloys (AM [2])
 - Purpose: Provide material option with higher potential operating temperature
 - Graphite (AM [1])
 - Purpose: Provides material option to combine moderator with structural material

Expanding the Potential Materials for Use with Technology Enabling Manufacturing Processes

- Tensile testing of AM Grade 91 as-deposited shows enhanced high temperature properties
- Strength is over 200
 MPa higher than
 wrought at 600C and
 ductility is improved
- Complex semi-bainitic microstructure

Next Step: Identify property limits under creep and temperature for AM Grade 91 steel.

Microreactor

Expanding materials and processes for higher temperatures

- Initial study of weld pool study for additive manufacture of TZM
- Process parameter optimization of TZM indicates AM is possible

Predictable, stable molten pool shown below will provide adequate bonding between layers with minimal lack-of-fusion defects Without optimization, process parameters that provide a low linear energy density (similar to steels) are seen to lack appropriate penetration

40 um

Next Step: Begin fabrication of test coupons of AM TZM to begin identifying properties

All materials developed on EOS M290 AM Machine Results courtesy of M Brand (2021)

Directly experimentally assessing the life of Grade 91 under cyclic thermal loads is extremely challenging

- Creep-fatigue damage will likely control the design life of microreactor components
- Complex thermal stresses
- Likely more cyclic service compared to conventional reactor designs
- Realistic hold times and strain ranges would take years to experimentally determine
- A physically-based model to predict cyclic life will improve design efficiency and better quantify component safety

Model predicts high cycle fatigue curve with minimal calibration

Extend framework to model creep-fatigue conditions

Representative

microstructure

Physically-based grain bulk deformation *and damage* model Physically-based boundary deformation/damage model

Stress vs time for fixed strain range (creep-fatigue) Tests conventionally stopped at 20% load drop

Conclusions

- Progress is being made to qualify YH for reactor applications
 - Scale up to support testing
 - Fundamental properties measurements
- Identifying candidate structural materials for applications
 - Enabling new manufacturing methods
 - Expanding potential materials pool
 - Creating a framework for simulating life cycle of candidate materials

Clean. Reliable. Nuclear.

