

Molten Salt Reactor P R O G R A M

Generation of Molten Salt Thermochemical Properties at USC

Ted Besmann

Annual MSR Campaign Review Meeting 16-18 April 2024

Contents

- Milestone/accomplishments in FY23 and FY24 to date
- Measurements and modeling for thermochemical values
- Reevaluation of FLiNaK and FLiBe systems
- Optmization of lanthanide-containing fluorides
 - LiF-NaF-(LaF₃, CeF₃, PuF₃)
- Optimization of fuel systems
 - NaCl-UCl₃-PuCl₃
 - LiF-BeF₂-ZrF₄-UF₄
- Modeling of iodine-containing reciprocal salt systems
 - Na, K, Cs, Mg | Cl, I
 - Li, Na, K, Cs, | F, I
- Applications
- Proposed/current FY24 efforts and data needed from program activities beyond those at USC

Milestone/Accomplishments

FY23 L4 Milestone: Complete addition of $MgCl_2$ to NaCl and/or KCl with UCl_{3,4} and reciprocal salts with iodine. 7/31/2023

Summary of FY23 and FY24 to-date accomplishments

- Release of MSTDB-TC Versions 3.0 and 3.1
 - 74 iodine-containing systems
 - Inclusion of base salt ZrF₄ component systems
 - Addition of important fission products
 - SrF₂, BaF₂, YF₃, PrF₃, LaCl₃, NdCl₃, ZrCl₄
 - Mo, Ru, Rh, Tc, and Pd alloys and intermetallic compounds from direct incorporation of the models of Kaye et al.
 - He, Ne, Ar, Kr, and Xe, although absent any models for solubility in salt
 - Expansion of CsF-containing systems: CsF-ZrF₄, CsF-BeF₂, and LiF-CsF-BeF₂
 - Expansion of PuCl₃-containing systems: PuCl₃ with LiCl, NaCl, KCl, MgCl₂, UCl₃ plus higher-order systems
 - Inclusion of relevant heterocomplex vapor species
- Modeled NiF₂, FeF₂, CeF₃, PuF₃, and LaF₃ solubilities in FLiBe (Ni and Fe efforts performed under a NEUP)
- Revision of FLiNaK and FLiBe systems, and modeling of FLiBe-UF₄
- Modeled LiF-NaF-UF₄ and KF-NaF-UF₄ pseudo-ternary systems
- Modeled K,Mg|Cl,I and Mg,Na|Cl,I reciprocal systems and accompanying CsCl-MgCl₂ and CsCl-NaCl pseudo-binaries
- Reevaluated the LiF-NaF-(LaF₃, CeF₃, PuF₃) pseudo-ternary systems

3

Publications & Workshop

Workshop

Training/Workshop for the Molten Salt Thermal Properties Databases Hosted by the University of South Carolina Virtual, April 25, 2023 Organizers Dianne Ezell (ORNL) and Ted Besmann (USC)

Publications

Applications of Thermochemical Modeling in Molten Salt Reactors, T. M. Besmann, J. Schorne-Pinto, M. Aziziha, A. M. Mofrad, R. E. Booth, J. A. Yingling, J. Paz Soldan Palma, C. M. Dixon, J. A. Wilson, D. Hartanto, Materials 17(2) (2024) 495.

Thermal Property Modeling and Assessment of the Physical Properties of FLiNaK, J. Schorne-Pinto, M. Aziziha, H. B. Tisdale, A. M. Mofrad, A. Birri, M. Christian, J. C. Ard, Johnathan, R. E. Booth; J. A. Yingling, J. Paz Soldan Palma, C. M. Dixon, H.-C. zur Loye, T. M. Besmann. ACS Applied Energy Materials, accepted.

Thermodynamic Reassessment of CsF with FLiNaK, C. M. Dixon, J. A. Yingling, J. Schorne-Pinto, M. Aziziha, and T. M. Besmann, J. Moll. Liq. Accepted.

A Comprehensive Thermochemical Study of LiF, NaF, and KF Alkali Fluorides: How Accurate Current Liquid and Gas Thermodynamic Functions?, J. Schorne-Pinto, M. Aziziha, H. B. Tisdale, M. Christian, J. C. Ard, R. E. Booth, K. R. Foster, J. A. Yingling, C. M. Dixon, A. M. Mofrad, H.-C. zur Loye and T. M. Besmann, J. of Physical and Chemical Reference Data, final revisions

MSTDB-TC Development Based on the CALPHAD Method

Molten Salt Thermal Properties Database –Thermochemical (MSTDB-TC) is a self-consistent **thermodynamic database designed for use by the molten salt reactor community**

- CALPHAD method based on minimizing the total Gibbs energy of the system
- Careful assessments to assure the quality of high-order systems
- Exhaustive literature review
- Critical evaluation of experimental data
- Measurements are made to fill knowledge gaps Evaluated thermodynamic properties

Radiological Facilities at USC (U and Limited Pu) Supporting MSTDB-TC Development

Two 750 sq. ft. laboratories

• Gloveboxes

> 40 salts (chlorides, fluorides and iodides)Purification furnace system inside glovebox

Calorimeters

DSC 404 F3 Pegasus® - Netzsch

Melting points (±3 K), enthalpy of fusion (±3% for HF DSC, ± 1% Calvet), C_p (2% solid and 3% liquid using the Calvet)

STA 449 Jupiter® - Netzsch

• XRD (+3 other units) Rigaku Smartlab XRD (RT-1100 °C)

Chemical analysis

Chemical analysis by ICP-OES

Elementrac for O_2 and H_2

• Furnaces

2xMuffle (RT-1100 °C)

Tube furnace (RT-1700 °C)

Thermodynamic Descriptions for Pure Salts and Mixtures

Phases with fixed composition (stoichiometric):

$$\Delta G_i^{\circ}(T) = \Delta_f H_{298.15}^{\circ}(i) + \int_{298.15}^T C_{P_i}^{\circ}(T) dT - T \left(S_{298.15}^{\circ}(i) + \int_{298.15}^T \frac{C_{P_i}^{\circ}(T)}{T} dT \right)$$

- $\Delta_f H_{298.15}^{\circ}(i)$ is the standard enthalpy of formation
- $S_{298.15}^{\circ}(i)$ is the standard entropy
- $C_{P_i}^{\circ}(T)$ is the isobaric heat capacity

Phases with variable composition (solutions)

Recent Efforts on Verifying/Improving Unary (Endmember) Salt Descriptions

Pure salts \rightarrow Binary \rightarrow Ternary \rightarrow Multicomponent

Evaluated thermodynamic properties:

- Δ_fH⁰ (cr, 298.15 K)
 - Dissolution calorimetry (better)
 - emf (good-better)
 - DFT (good)
- S⁰ (cr, 298.15 K)
 - Adiabatic calorimetry (better)
 - PPMS (good-better)
 - emf (good)
- C_p (T)
 - HF-DSC (poor-good)
 - Calvet DSC (better)
 - Drop (good)
 - MD (poor-good)
 - AIMD (poor-good)
- T_{fus}
 - DSC/DTA (good)
 - emf (better)
- Vapor pressure
 - Transpiration (good)
 - Knudsen effusion (better)

Evaluation of Thermal Properties for Alkali Fluorides

- Concern over the sometime wide range of reported values for alkali fluorides prompted a review of unary system values
- Independent sets of values were generated in this effort and together with reported information yielded recommended values
- Values for KF were sufficiently different than previously assumed that all KF-containing systems in MSTDB-TC were re-optimized,

Reported and computed enthalpy increment and residuals and resultant Cp values

New FLiBe and FLiNaK System Optimizations

- Issues were seen in reported values for FLiBe
 - Heat capacity varies widely and required a critical assessment to resolve
 - Uncertainty in the melt temperature for BeF₂ remain and need to be experimentally resolved
- Importance of heterocomplex vapor species for FLiBe systems was revealed
- Measured and computed thermal properties for FLiNaK also exhibit a wide range of values and thus required measurements at USC to help ⁴ resolve

Reported and computed FLiNaK enthalpy increment, residuals and resultant Cp values

Thermochemical Models for FLiBe-ZrF₄-UF₄ (MSRE Fuel)

*Schorne-Pinto – unpublished

Pure salts \rightarrow Binary \rightarrow Ternary \rightarrow Multicomponent

11

CsF-containing Systems Optimized With Fluoride Fuel Salt

Pure salts \rightarrow Binary \rightarrow Ternary \rightarrow Multicomponent

Efforts to include CsF

Reciprocal Salt Models Necessary to Model Iodine Behavior in Fuel Salts

• Addressed to provide inputs for severe accident analysis

Individual Pseudo-Binary M | Cl, I (M=Na, K, Mg, Cs) Systems Required Novel Evaluation/Optimization

Evaluated systems

- NaCI-CsCl
- MgCl₂-CsCl
- Mgl₂-MgCl₂
- Nal-Mgl₂
- KI-Mgl₂
- CsI-Mgl₂
- CsI-KCI
- CsI-MgCl₂

Resultant Optimized Reciprocal Salts & Higher Order Systems Can Now Represent Key Systems

Reciprocal systems :

- K, Cs | Cl, I
- Na, Mg | Cl, I
- K, Mg | Cl, I
- Cs, Mg | Cl, I
- Na, K | Cl, I
- Na, Cs | Cl, I

Higher order systems:

- NaCI-KCI-CsCI
- CsI-Nal-KI
- CsCI-NaCI-MgCl₂
- CsCI-KCI-MgCl₂
- Nal-KI-Mgl₂
- Csl-Nal-Mgl₂
- CsI-KI-Mgl₂

Examples of MSTDB-TC Utilization

- Under the NEAMS program efforts have initially coupled the codes Griffin/Pronghorn/Thermochimica/Mole for simulation of MSR behavior
 - Griffin and Pronghorn provide neutronics that allow depletion calculations supplying local elemental composition codes
 - Elemental composition used in Thermochimica which calls MSTDB-TC to calculate allows equilibrium state of salt
 - Speciation
 - Concentration
 - Halide potential
 - Phase precipitation
 - Mole code allows for mass accountancy/tracking of species in MSR fuel/coolant loop

MSTDB-TC Library of Functions Can Contribute to Modeling of Corrosion

- Increasing halide potential \Rightarrow increased corrosion product concentration (unsurprising)
 - Increased UCl₄ content in UCl₃
 - Decreased UF₃ content in UF₄
- Little temperature dependence of critical Cr-halide concentration (observed in fluoride salt loop)

Example of the Application of MSTDB-TC in MELCOR

- MELCOR has been coupled (at least manually) with MSTDB-TC and used to compute fission product release rates
- In an earlier effort by Wagner et al.* MELCOR was exercised using MSRE conditions and Antoine-type vapor pressure relations
- That effort limited database could not consider complex species
- Low release rates were found from both the approach of Wagner et al. and in use of the more extensive MSTDB-TC database

*MELCOR Accident Progression and Source Term Demonstration Calculations for a Molten Salt Reactor, Kenneth Wagner, Brad Beeny, Troy Haskin David Luxat, Rod Schmidt, SAND2023-01803 (April 2023)

FY24 Efforts

L3 Milestone: Complete the assessment of CeF_3 - UF_4 : LaF_3 - UF_4 ; $BaCl_2$ - UCl_3 ; $SrCl_2$ - UCl_3 ; $LaCl_3$ - UCl_3 ; $CeCl_3$ - UCl_3 ; $ZrCl_4$ -(NaCl, KCl, MgCl_2, UCl_3); NaCl-LaCl_3; MgCl_2-LaCl_3 systems and their inclusion in MSTDB-TC. 9/30/2024

Workshop on Measurement and Analysis of Thermochemical & Thermophysical Properties of Molten Salts

The meeting will be solely virtual

<u>10 AM – 3 PM Eastern US Time, July 16-17, 2024</u>

New capabilities acquired in FY24:

- Setaram Calvet DSC capable to 825°C for accurate Cp measurements
- Elementrac fusion analysis instrument to measure oxygen and hydrogen content in salts
- High temperature XRD using sealed fused silica capillaries

Data Needs USC Cannot Satisfy

- Priority information required for MSTDB-TC beyond USC scope/capability to determine
 - Improved phase equilibria, enthalpies of mixing, Cp for the intermediate compounds for PuCl₃ systems with LiCl, NaCl, KCl, MgCl₃
 - Relevant phase equilibria and thermal values
 - UI_3 - $UF_{3,4}$; UI_3 - $UCI_{3,4}$; BeI_2 - BeF_2
 - Experimental phase equilibria for Be-containing systems
 - Resolving BeF₂ melting temperature
 - BeF₂-CrF₂; BeF₂-FeF₂; and BeF₂-NiF₂
 - LiF-BeF₂-CrF₂; LiF-BeF₂-FeF₂; and LiF-BeF₂-NiF₂

USC General Atomics Center

MSR Project Participants Juliano Schorne-Pinto Co-developer of MSTDB-TC Mina Azizha Ronnie Booth Clara Dixon Zachary Gardiner Amir Mofrad Aiswarya Padinhare Manissery Jorge Paz Soldan Palma Jack Wilson

Questions

Your email Address

Office of **NUCLEAR ENERGY**