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Tritium Generation in MSRs

3

10
0

10
2

10
4

10
6

10
8

Energy (eV)

10
-6

10
-4

10
-2

10
0

10
2

C
ro

ss
 S

ec
tio

n 
(b

)

6
Li (n,t), ENDF/B-VIII.0

7
Li(n,n ), CENDL-3.2

9
Be (n,t), ENDF/B-VIII.0

9
Be (n, ), ENDF/B-VIII.0

19
F (n,t), ENDF/B-VIII.0

Tritium generation rates in 
fluoride salt reactors are 
similar to CANDU reactors. 
CANDUs produce world’s 
supply of tritium for peaceful 
purposes.
Tritium is a potential valuable 
byproduct of MSRs. 

6Li (7.5%) large thermal cross-section. 
7Li (92.5%) moderate cross-section in 
fast-spectrum. 
9Be and 19F tritium in fast-spectrum. 

Tritium generated by neutron 
reactions with Li, Be, and F.

Sabharwall, P.; Schmutz, H.; Stoots, C.; Griffith, G. Tritium Production and Permeation in High-
Temperature Reactor Systems;, 2013. https://doi.org/10.1115/HT2013-17036.

Andrews, Hunter B., et al. "Review of molten salt reactor off-gas management considerations." 
Nucl. Eng. Des. 385 (2021): 111529.
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Transport Processes
1. Tritium production (neutrons + Li, Be, F)
2. Speciation/corrosion (TF vs. T2)
3. Graphite interaction
4. Evolution into plenum/off-gas system
5. Diffusion through primary system structural 

materials
6. Diffusion into secondary coolant
7. Diffusion through secondary system 

structural
8. Release from secondary system plenum/off-

gas system
9. Onwards into tertiary system
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Can we predict tritium transport in order to develop 
required mitigation technology? 



Tritium Permeation Basics
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Mass Transport Processes: J Flux (mol m-2 s-1)
1. Mass transfer in Salt: J = 𝐊𝐊𝐓𝐓,𝟏𝟏(CB,1 − CB,2)

2. Dissociation on Surface: J = 𝐤𝐤𝐝𝐝
𝐊𝐊𝐇𝐇

CB,2 − 𝐤𝐤𝐫𝐫CS,1
2

3. Diffusion through Metal: J = −𝐃𝐃𝐬𝐬
𝜕𝜕𝜕
𝜕𝜕𝜕

4. Recombination on Surface: J = 𝐤𝐤𝐫𝐫CS,2
2 − 𝐤𝐤𝐝𝐝𝑃𝑃𝑆𝑆,2

5. Mass transfer in 2nd Fluid: J = 𝐊𝐊𝐓𝐓,𝟐𝟐(CB,3 − CB,4)

Tr
iti

um
 C

on
ce

nt
ra

tio
n

Metal

Position

CB,1

CB,4
Salt

Room
(Coolant)

1 2 3 4 5

CB,3

CB,2

CS,1

CS,2

𝐊𝐊𝐓𝐓(DL, v, dH,μ, ρ) ∶mass transfer coefficient (m s-1) 

𝐤𝐤𝐝𝐝: dissociation coefficient (mol m-2 s-1 Pa-1) 
𝐤𝐤𝐫𝐫: recombination constant (m4 mol-1 s-1)
𝐊𝐊𝐇𝐇: T2 solubility in salt (mol m-3 Pa-1)

𝐃𝐃𝐬𝐬: diffusion coefficient (m2 s-1)

Red indicates parameters requiring experimental measurements



Tritium Transport Research Needs
Fundamental 
Measurements
• Salt Properties:

• Thermophysical
• Hydrogen: solubility, 

diffusivity, speciation
• Data exists in literature 

with large uncertainty
• Material Properties:

• Hydrogen diffusivity, 
solubility, surface 
reactions

• Databases exist [1]
• New materials require 

testing 
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Semi-Integral and Integral 
Experiments
• Mass transfer

• Fluid phase boundaries
• Evolution from free 

surfaces
• Coupled phenomena

• Corrosion and interfaces
• Generation
• Speciation / Redox 

Control
• TF vs. T2

Development of control 
technology [1,2]
• Sparging to off-gas

• Addition of H2

• Novel HX designs
• Online tritium specific 

extraction systems
• Membranes, vacuum 

disengage, absorbers

• Permeation barriers

[1] PW Humrickhouse and TF Fuerst. INL/EXT-20-59927 United States, 2020
[2] C Forsberg et al. Nuclear Technology 206.11 (2020): 1778-1801.



Molten Salt Tritium Transport Experiment
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• MSTTE is a semi-integral tritium transport 
experiment for flowing fluoride salt systems.

• Location: Safety and Tritium Applied Research facility
• Objectives:

(1) Safety code validation data.
(2) Test stand for tritium control technology.  

• Major Equipment: 
• Copenhagen Atomics Salt Loop: salt tank, pump, & flow meter
• External Test Section: hydrogen injection, permeation, & plenum

• Phased approach
• Phase I: FLiNaK and D2
• Phase II: FLiBe and D2
• Phase III: FLiBe and T2



MSTTE Transport Phenomena
• Permeation through structural materials: 

permeation test section
• 2000 < ReFlinak < 80,000 & 1000 < ReFlibe < 40,000 

• Evolution to off-gas: plenum and salt tank
• Versatile test section for future campaigns 

on transport or control technology.
• Examples: 
• Sparging
• Absorption 
• Heat exchangers 
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Copenhagen Atomics Salt Loop
• Pump, flow meter, & salt tank inside furnace.
• Flowing Ar cover gas for salt tank. 
• All encased in inert atmosphere enclosure. 
• Ships with purified FLiNaK in salt tank. 
• Ports routed to external test section.
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https://www.copenhagenatomics.com/pdf/Loop_v5.2_Datasheet.pdf



Copenhagen Atomics Loop Status

• Loop assembled at 
Copenhagen Atomics

• Water testing underway with 
prototypic external section.

• Salt commissioning next 
step. 

• NRTL field evaluation 
phase-I complete. 

• Delivery Date: July 3, 2023
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Courtesy of Aslak Stubsgaard, Copenhagen Atomics

Inside Enclosure Furnace Prototypic test section



External Test Section
• Major Components

• Hydrogen Injection System
• Permeation Section
• Plenum
• Diagnostic Ports

• Specifications:
• Structural Material:

• 316 Stainless Steel
• 1.5” Outer Diameter
• 0.065” Wall Thickness

• Sealing: Copenhagen Atomics custom flanges
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Hydrogen Injection System
• Injection through method of 

permeation. “Source Permeator”
• Five 10-in long 1/4” OD closed-end 

tubes internally pressurized with H2.
• Designed as unbaffled in-line square 

pitch shell-and-tube HX.
• Tubes are exchangeable.  
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10”

T = 873 K 
F = 100 LPM
FLiBE

• Design achieves prototypic 
concentrations for MSR system.  

• Modeled once-through permeation rate 
through system numerically. 

• Mass transfer taken from heat transfer 
• Donohue, 1949   

• Assumptions: 
• Zero initial concentration
• Steady-state permeation

Sh = 0.128De
′ Re0.6Sc0.33

D. Donohue Ind. Eng. Chem. 1949, 41, 11, 2499–2511



Permeation Section
• Goal: Measure hydrogen permeation 

through structural materials in flowing salt. 
• Mass Balances: 

• Salt with dissolved H2 flows through tube.
• Vacuum boundary around 18 in length.
• H2 permeates through metal into vacuum 

pumping system. Rates monitored with QMS. 
• Design Considerations

• Fully-developed flow in permeation section. 
• Permeation rates measurable with QMS. 
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Test Section SAM Model
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• System Analysis Module (SAM) is a systems code for 
advanced non-LWR safety analysis developed by ANL as a 
NEAMS tool. Tritium transport capabilities incorporated for 
MSR/FHR analysis. 

• MSTTE test section modeled under transient conditions.
• Analysis based on 0.61m length and 3 mm wall thickness 
• Note new design is 0.46 m length and 1.65 mm wall thickness. 
• Flibe flow rate = 100 LPM, T= 700 °C, CT = 10-5 mol T2 m-3

• Probe concentration evolution in test section.
• Steady-state achieved after ~2 days (dependent on mass transfer)
• Investigated mass transfer: T mass transfer in FLiBe rate-limiting. 
• Defines tritium permeation rate and transient profile. 

• Complete system model planned this summer.

Courtesy of T. Mui and R. Hu at ANL



Copenhagen Atomics Flanges

• Flanges required to 
mount external test 
section to pump loop and 
to mount permeation test 
section. 

• High risk component to 
contaminant salt with air 
and avenue for salt 
leakage.

• Double seal method with 
localized inert Ar
atmosphere developed. 
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Example Flange Interface Example Flange Assembly

Courtesy of Aslak Stubsgaard, Copenhagen Atomics



Corrosion and Wall Thickness
Wall Thickness: 0.065 in = 1.65 mm 

• Required for short radius bends
• Dimension of CA flange ports
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Alloy Salt Condition Temp. 
(°C)

Duration
(h)

Corrosion Rate
(μm/yr)

Reference

316 FLiBe Static 700 3000 17.1 (316 in 316)
31.2 (316 in Graphite)

Zheng, 2015
10.1016/j.jnucmat.2015.03.004

316 FLiBe Static 700 3000 16 (prediction) Zheng, 2016
10.1016/j.jnucmat.2016.10.023

316H FLiNaK Flowing 650 1000 5 μm / 1000 h (hot leg)
43.8 μm/y

Raiman, 2022
10.1016/j.jnucmat.2022.153551

316L FLiNaK Static 600 300 996.3 (austenite)
3650.4 (ferrite)

Maric,  2018
10.1016/j.corsci.2018.07.006

316 FLiBe Flowing 650 max 25,103 15 (as received salt) 
<2 (with Be addition)

Keiser, 1979
10.1016/0022-3115(79)90505-1

Minimum thickness (tm) is 0.40 mm per B31.3
• Corrosion Thickness: c = 0.05 mm (10,000 h at 43.8 μm/y) 
• Design pressure thickness: t = 0.35 mm (0.3 MPa)



External Test Section Mounting
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Commissioning Tests
1. Helium leak check: assembly.
2. Thermal test: heating system and 

support structures.
3. Helium permeation tests: 

hydrogen systems operate 
properly and analysis codes. 

4. Mate to Copenhagen Atomics 
loop: leak check for assembly. 

5. Begin salt campaigns! 
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Work plan
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Phase I: D2 & FLiNaK
• FY23-24*
• System shakedown

• Ensure proper 
functionality of loop 
components

• Test exchange and 
operating procedures

• Initial dataset for code 
validation: transport 
through structural and HX 
materials

• Design salt exchange and 
purification system 

• Design alternate test 
sections

Phase II: D2 & FLiBe
• FY25*
• Implement salt exchange 

and salt purification system
• Replicate structural and HX 

material experiments with 
FLiBe

• Extraction/control 
campaigns: sparging, 
absorption, permeation 
extraction 

• Design, procure, and 
prepare facility for tritium 
operation

Phase III: T2 & FLiBe
• FY25/26* - Onward
• Tritium validation testing
• Permeation campaigns for 

structural and HX 
materials

• Extraction/control 
campaigns: sparging, 
absorption, permeation 
extraction 

*Timelines are subject to change based on program needs
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Salt Tank
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Salt Exchange and 
Purification System

Secondary Enclosure 
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Future Work Implementation

Advanced Test Reactor

STAR

Safety and Tritium Applied 
Research facility
• Tritium handling < 1.5 g
• Be handling



Summary
• Tritium is a unique radionuclide relevant to fluoride-salt molten 

salt reactors due to its generation and ability to uptake and 
permeate through materials. 

• Molten Salt Tritium Transport Experiment is a unique and 
versatile capability designed to provide tritium transport data 
and test control technology related to Molten Salt Reactors. 

• MSTTE Status: design is complete and is currently under 
construction. 

• Commissioning to start this FY.
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Thank you

thomas.fuerst@inl.gov


