Systems Analysis & Integration Campaign Overview

Brent Dixon National Technical Director

GAIN-Industry INL Visit June 7, 2022

June 7, 2022

SA&I Campaign Objectives

- Perform comprehensive analysis of nuclear energy systems (NES) to determine technical and economic viability, identifying benefits and challenges
 - Provide insights on legacy and newly proposed reactors and nuclear energy systems
 - Develop understanding of the role of nuclear energy and its competitiveness in current and future domestic and global energy markets
 - Identify and assess strategies to improve economics, technical and social sustainability of nuclear energy
- Utilize and enhance leading-edge systems analysis tools, models & capabilities
- Facilitate integration of DOE NE-4/NE R&D portfolio and strategy
- Execute quick-turnaround requests from HQ

SA&I Campaign Organization

Analyses of NESs to improve understanding of how specific sets of technology options function as a system Studies of potential drivers and strategies for nuclear energy system (NES) competitiveness

Early Campaign History – Actinide Burning, Fuel Cycle Options

- Advanced Transmutation of Waste Program
 - Focus on physics associated with destruction of actinides, LLFP using accelerator-driven systems
 - ADS determined to be less effective for actinide burning than reactor-based systems
- Advanced Fuel Cycle Initiative & Global Nuclear Energy Partnership
 - Refocused on physics for actinide burning and repository heat load, cost of fuel cycle functions, contributions to reports to Congress
 - Advanced Fuel Cycle Cost Basis unit costs for every nuclear energy system function (mining to disposal)
 - Dynamic Systems Analysis Report for Nuclear Fuel Recycle
 - Initial analyses of nuclear contributions to decarbonization

• Fuel Cycle Research & Development Program

- Solution space expanded to include breeding, added deployment & implementation issues
 - Nuclear Fuel Cycle Evaluation and Screening report comprehensive assessment of all possible fuel cycles
 - Minor Actinides study
 - Fuel Cycle Catalog
 - NE-Cost tool

Cost Basis Modules

Economic Analysis Modules and Primary Flows

Disposal costs charged at the time that energy June 7, 2022 5 is produced by R1.

Current Program

• Nuclear Fuel Cycle and Supply Chain

- Emphasize on economics, deployment support
 - Technology and System Readiness Assessment (TSRA) methodology
 - Evidence-based method to manage R&D, develop maturation plans/roadmaps
 - Cost Basis Report augmented with reactor systems costing algorithms
 - Functional code of accounts to cover full range of reactor concepts from MWe to GWe
 - Nuclear role in decarbonization of multiple economy sectors
 - Net-zero energy mix
 - Daily market studies to assess importance of clean firm generation for grid stability
 - Tools for siting analysis, economic impacts, environmental justice
 - International Programs
 - NEA Working Parties on Nuclear Economics, Reactor Systems, Advanced Fuel Cycles

Current Program (cont.)

• Recent deliverable highlights

- Transition Analysis summary report (2018)
- Technology Maturity and Economic Performance Potential of micro-reactors (2019)
- Lessons learned from LWR Deployment History (2020)
- Journal Articles on Policy Impacts on Maintaining/Enhancing Role of Nuclear (2020)
- Fuel Cycle Facilities Technology Readiness Assessment to support reactor deployments (2021)

• Quick Turnaround Studies

- Initiated by NE-4 and Front Office requests
 - May be internal to NE, or support external collaborations/reviews
- Recent examples -
 - Assessment of cost impact of Senate bill on economically challenged plants
 - Projection of HALEU needs for advanced reactors supporting decarbonization
 - Information/presentations to National Academies study on merits/viability of fuel cycles
 - Briefings to NE staff on energy markets, Texas polar vortex, etc.

FY 2022 Activities

Nuclear Energy System Performance

- Scenario Analysis and Technology Roadmap Studies of Fuel Cycle Facilities for Demonstration Reactors
- Investigate Benefits and Challenges of Converting Retiring Coal Plants into Nuclear Plants
- Nuclear Roles for Electricity Market Reliability in Deep Decarbonization Scenarios
- Quick Turn-Around Studies
- Fuel Cycle Analysis to Support Technology Campaigns
- Support DOE NE in International Engagements

Economic and Market Analysis

- Energy mix analysis for net-zero scenarios
- Pros and Cons Analysis of HALEU Utilization in Alternative Fuel Cycles
- Expand Cost Algorithm and Techno-economic Assessment Capabilities
- Cost Basis Report Improvement/Update
- Risks of Market-Driven Nuclear Power Plant Closures
- Incorporation of Detailed Cost Analysis of MARVEL Project

8

HALEU Needs Assessment Request

- Provide a documented estimate of HALEU needs that may be used in DOE discussions with stakeholders as part of preparations to establish the HALEU Availability Program
- Initial quick turnaround request, April 2021
- Subsequent request to issue as a publicly available report
 - Final report approved for public release January 3
 - <u>https://fuelcycleoptions.inl.gov/SiteAssets/HALEU%20Requirements%20for%20Net-zero.pdf</u>

The GCAM Model

Step 1 - Electricity demand and composition with Net-Zero goal

June 7, 2022

SA&I Campaign Overview

Step 2 - Reactor Deployment Schedule

New reactors were assumed to be constructed per the following approach:

• Advanced LWRs (LEU fuel):

- Completion of Vogtle 3 & 4 in 2022-2023 and the initial LWR SMR (NuScale 12-pack) by 2030
- Additional ALWRs completed starting in 2031 and SMRs in 2033, building by 2037 to 2 ALWRs (~2.2 GW) and 4 SMRs (~2.9 GW) completed per year
- Total of 88 GW of new advanced LWRs by 2050

• Advanced non-LWRs (HALEU fuel):

- Demonstration units of SFR (Natrium) and HTGR (Xe-100) completed in 2028
- Additional SFR and HTGR units completed starting in 2031, building by 2040 to 8 SFRs (~2.8 GW) and 8 HTGR 4-packs (~2.6 GW) completed per year
- Total of 74 GW of new non-LWRs by 2050

12

HALEU Needs Projection

• Total cumulative HALEU needed by 2050 is ~5,350 MT @ 19.75%

• Range of 3,450 – 7,175 MT HALEU based on varying reactor mix

HALEU Needs

Coal to Nuclear Study

- This study will yield an assessment of the scale of coal facilities feasible for repurposing to nuclear facilities across the US
 - Findings based on three layers of screening criteria
 - Results across all technically feasible sites
- The technology compatibility analysis will generate a technology mapping of characteristics from coal facilities to nuclear facilities
- Technology analysis will aid in cost model development and key drivers central to the decision to repurpose a site
- Economic study will reveal distributional impacts across households in terms of jobs and economic activity, which supports characterizing findings in terms of social and environmental justice

14

Fitting this work into the literature

Summary of institutions working in this area

Summary of this study contribution

- Scale of feasible CPP repowered to NPP
- Technical understanding of advanced reactors to CPP
- Cost model for evaluating conversion decision
- Assessment of economic impacts on jobs, taxes, training requirements

15

Criteria used to evaluate coal sites

- Green Meets all Criteria
- Yellow Single issue

- Orange Two issues
- Blue 3+ issues

OR-SAGE Screening Criteria for Reactor Technologies	Large LWR	Advanced Reactors
Population density (people/square mile)	>500 ppsm within <mark>20</mark> miles	>500 ppsm within <mark>4</mark> miles
Safe shutdown earthquake (ground acceleration)	>0.3	>0.5
Wetlands/Open waters	Not allowed	Not allowed
Protected Lands	Not allowed	Not allowed
Slope	>12% grade	>18% grade
Landslide hazard (moderate or high)	Flag	Flag
100-year floodplain	Not allowed	Not allowed
Streamflow – cooling water makeup (X gallons/minute; closed cycle cooling; limited to 10% of resource)	200,000 gpm	NA
Proximity to hazards (buffer distance)	Flag 1-10 miles	Flag 1-10 miles
Proximity to fault lines (buffer	Depends on	Depends on

June 7, 2022

16

distance)

length of fault

length of fault

Siting Summary (Draft)

- 39 of 50 states have at least one CPP site that is amenable to advanced reactor backfit based on the high-level OR-SAGE evaluation
- 80% of the evaluated operational and retired CPP sites are amenable to advanced reactor siting
- Population/population density is the leading discriminating factor for backfit of an advanced reactor at CPPs
- Reactor backfit plans need to be incorporated into utility and IPP IRPs
- Future siting analyses should focus on operational CPPs that are planned for retirement 7-10 years or more in the future to allow for alignment of CPP resources with realistic advanced reactor deployment timeframes

Agent-based assessment of decision drivers for Midwest CPP repowering

18

Tax Impact Estimates (Draft)

Economic Impact Results (\$ Millions)						
Impact Scopario	Tax Impacts					
impact Scenario	County	State	Federal	Total Tax		
Pre Closure	\$23.2	\$32.1	-\$4.6	\$50.7		
1 - Direct	\$20.4	\$27.8	-\$6.1	\$42.0		
2 - Indirect	\$2.3	\$3.5	\$0.9	\$6.8		
3 - Induced	\$0.5	\$0.8	\$0.6	\$1.8		
All Nuclear	\$36.8	\$52.6	\$7.7	\$97.2		
1 - Direct	\$29.7	\$42.1	\$3.8	\$75.6		
2 - Indirect	\$5.2	\$7.7	\$1.8	\$14.8		
3 - Induced	\$1.8	\$2.8	\$2.0	\$6.7		
Net Change Coal to Nuclear	\$13.6	\$20.5	\$12.3	\$46.5		
1 - Direct	\$9.4	\$14.3	\$9.9	\$33.6		
2 - Indirect	\$2.9	\$4.2	\$0.9	\$8.0		
3 - Induced	\$1.3	\$2.1	\$1.5	\$4.8		
Note: All results are rounded, as a result the sum of direct, indirect, and induced impacts may not equal the grand total.						

Environmental Impact Estimates (Draft)

Impact Type	Scenario (Jobs)	Kg/Year	Kg/Year	Sq Meters	Kg/Year	Kg/Year	Kg/Year	Kg/Year	Cubic Meters
		Criteria Pollutants	Greenhouse Gases	Land Use	Mineral Use	Nitrogen and Phosphorus Release to Water	Pesticide Emissions	Toxic Chemical Releases	Water Use
Direct	Pre-Closure (150)	5,406,176	2,595,982,880	1,833,454	0	36,656	0	28,790	297,446,454
(PP Only)	Nuclear (150)	4,006,213	7,977,364	1,358,670	0	27,167	0	21,335	220,420,840
•	Nuclear (270)	7,211.183	14,359,256	2,445,606	0	48,894	0	38,402	396,757,512
	Nuclear (360)	9,614,911	19,145,674	3,260,808	0	65,192	0	51,203	529,010,016
Total	Pre-Closure (150)	6,222,468	2,744,173,698	3,211,800	774,813	135,989	5	32,379	334,603,463
	Nuclear (150)	4,776,462	157,455,878	2,029,567	677,238	129,434	7	25,005	258,428,602
	Nuclear 270	8,597,632	285,220,581	3,653,221	1,219,028	232,981	13	45,009	465,171,484
	Nuclear (360)	11,463,509	380,294,108	4,870,961	1,625,370	310,641	17	60,012	620,228,645

> -99% from Pre-Closure (PP Only)

-86% from ²⁰Pre-Closure (Total)

Workforce Transition Analysis (Draft)

	Fossil	Nuclear	Net
Occupation Title	Jobs	Jobs	Change
Power plant operators	-25.35	2.16	-23.19
Electrical power-line installers and repairers	-10.2	2.52	-7.68
Electrical and electronics repairers, powerhouse,			
substation, and relay	-7.8	10.44	2.64
Electrical engineers	-6.75	9.72	2.97
First-line supervisors of production and operating			
workers	-6.3	17.28	10.98
Customer service representatives	-5.25	0	-5.25
Industrial machinery mechanics	-4.65	9.36	4.71
First-line supervisors of mechanics, installers, and			
repairers	-4.5	8.64	4.14
Control and valve installers and repairers, except			
mechanical door	-3.45	0.72	-2.73
Electricians	-3	5.76	2.76
Power distributors and dispatchers	-3	1.08	-1.92
General and operations managers	-2.7	2.52	-0.18
Project management specialists and business			
operations specialists, all other	-2.55	7.2	4.65
Management analysts	-2.1	2.16	0.06
Electrical and electronic engineering technologists			
and technicians	-1.95	2.16	0.21
	-89.55	81.72	-7.83

- Nuclear Power Industry employs 80 occupations. Fossil Electric Power Industry employs 118 occupations.
- Direct Jobs in Occupations Scenario: Fossil (– 150), Nuclear (+ 360)

Social and Environmental Justice (Draft)

	Region	United States	
	Demographics		
Population	78,000 331,893,745		
People of Color	11%	40%	
Low Income	34%	31%	
Demographic Index	22%		
	Income and Employment		
Median Housing Value	\$119,000	\$229,800	
Median Household Income	\$56,000	\$64,994	
Civilian Labor Force	62%	63%	
Unemployment Rate	4%	5%	
Persons in Poverty	10% 11%		
	Education		
High School Diploma	91%	89%	
Bachelor's or Greater	21% 33%		

• Air quality can be improved

- Less diversity than comparison
- Economic gains for disadvantaged community
- Education shows qualified people, but some will need additional college

Environmental Indicator Category	Value	EJ Index (adj.)	State Percentile
Superfund Proximity (site count/km distance)	0.02	-0.71	50
2017 Diesel Particulate Matter (ug/m3)	0.17	-0.82	49
2017 Air Toxics Cancer Risk (risk per MM)	21.91	-0.37	45
2017 Air Toxics Respiratory HI	0.30	-0.47	43
Particulate Matter 2.5 (ug/m3)	9.33	-0.87	42
Ozone (ppb)	44.12	-1.17	41
Hazardous Waste Proximity (facility count/km distance)	0.72	-0.42	41
Wastewater Discharge (toxicity-weighted concentration/m distance)	0.21	-0.90	39
Traffic Proximity (daily traffic count/distance to road)	242.89	-0.80	38
Lead Paint (% pre-1960s housing)	0.37	-0.75	28
Underground Storage Tanks	5.17	-1.13	25
Riks Management Plan Facility Proximity (facility count/km distance)	1.47	-0.80	22

Thank You

Questions?

