The Case for Micro Reactors as On-site Generators at Government Installations

P.Wilson (PI) M.Corradini, T.Palmieri

May 12, 2021

INSTITUTE FOR NOCLEAR ENERGY SYSTEMS

Our Study

- To determine whether micro-reactors can satisfy a need for <u>resilient power</u> at U.S. Government sites.
- To determine whether it would be <u>practical</u> to try to site micro-reactors at federal agency installations.
- To make recommendations to Department of Energy:
 If DOE goes down this path, how might DOE proceed?

Study Tasks

Short-term: Assist DoE in developing program plan for micro-reactors at DoD sites. (Task was completed in early 2019 and Draft report submitted)

Long-term:

- 1. Estimate size of market for new on-site secure power at federal agency installations.
- 2. Survey potential vendors of micro-reactors to elucidate their respective technologies.
- 3. Perform economic analysis: Under what conditions can micro-reactors compete with other technologies to provide on-site power (Diesels are baseline for on-site power)?
- 4. Regulatory issues: What are licensing options and issues that need to be addressed?
- 5. Decision whether to go forward: What are the acquisition options for micro-reactors? *How can this program be a bridge to commercial introduction of micro-reactors*

Task 1: Estimate the Market

- FEMP provided an extensive range of energy use data.
- UW team surveyed the largest energy users in each civilian agency as well as their specific federal agency facilities (>200 facilities with >4MW energy usage).
- UW received detailed energy use data for selected facilities
- For these larger energy users:
 - All federal installations are connected to the grid;
 - 40-60% of energy is in form of electrical power;
 - Critical loads have many small local backups (buildings).
- Micro-grids will be a natural evolution for facility resilience with larger backups
- We estimate there are over 200 potential sites, assuming that it is reasonable to site at least a single micro-reactor with backup for redundancy.

Task 2: Micro-reactor potential vendors

- There is a wide range micro-reactor design concepts available.
- Conceptual technical designs have details to be determined.
- Cost estimates exist only as proprietary data; i.e., FOAK estimates as well as required R&D development costs.
- UW contact with individual vendors did not provide any firm basis for stated cost estimates. A detailed methodology to estimate costs will be necessary to gain confidence in future.

Micro-Rx Systems

USNC OKLO

U-Battery

3-phase AC **Power Bus**

Transport ISO Container Organic Rankine Cycle (ORC) Heat Exchangers Cooling

HolosGen[™]

Subcritical Power Modules

Process Heat Hydraulic Ports

3MWe - 13MWe Generator

(CC)BY Paul P.H. Wilson [2021]

2021.05.12 - GAIN Microreactor Workshop

Task 3: Economic Analysis

- Developed a set of cases to consider for analysis
 - Status quo
 - On-site generators for critical load with backup
 - On-site generators for whole facility load with backup
- Considered all energy technologies to supply power
 - (Diesel, Natural Gas, Micro-reactor, Renewables + Storage)
- Gathered cost inputs from variety sources (e.g., NREL, EIA)
- Analysis using simple tool and optimization tool (Homer)

Scenario #1: Status Quo

- Utility as primary supply of all electricity
- Diesel or fossil gas backup units for critical load

4 MWe average load 2 MWe critical load

Scenario #2: Partially Decoupled

- On-site power for critical load
- Utility provides variable load
- Utility provides backup for critical load

4 MWe average load 2 MWe critical load

©CLEA

Scenario #3: High-reliability

- On-site power for critical load
- Utility provides variable load
- Utility provides backup for critical load
- Additional onsite backup

4 MWe average load 2 MWe critical load **©CLEA**

Scenario #4: Off-Grid

- On-site power for all load
- On-site backup power for critical load

©CLEA

Scenario #1

Annual Cost of Implementing Scenario 1

2021.05.12 - GAIN Microreactor Workshop

Scenarios #2 & #3

Annual cost of Implementing Scenario 2

Annual cost of Implementing Scenario 3

CCBY Paul P.H. Wilson [2021]

2021.05.12 - GAIN Microreactor Workshop

Scenario #4

Annual Cost of implementing Scenario 4

2021.05.12 - GAIN Microreactor Workshop

15

N[®]CLEAR

"Green Site" Analysis

- Carbon-free off-grid (Scenario #4)
 - Allowed technologies: wind, solar PV, batteries, nuclear microreactor
- HOMER Microgrid Energy System Optimization Tool
 - Developed at NREL
 - Finds lowest cost combination of technologies to meet timevarying energy demand
 - Implemented microreactor module & dispatch algorithm
- UW-Madison load shape and climate conditions

"Green Site" Analysis

	Inputs		Outputs				
Case No.	Nuclear Costs	PV-Battery Costs	Nuclear Size (MWe)	PV Solar Size (MWe)	Battery Size (kWh)	Annual Level. Cost ^A (\$ Mill/yr)	Levelized Cost of Electricity (\$/MWh)
1	No nuclear	Best	0	122	220,000	17.8	510
2	Best ^B	Best	6.0	0	0	1.73	49
3	Medium ^B	Best	5.0	10.92	235	4.56	130
4	Medium ^c	Best	5.5	14.45	94	4.11	117
5	Medium ^B	Medium	5.5	0.83	7	4.83	138
6	Medium ^B	Worst	5.5	0.46	9	4.81	137
7	Worst ^B	Best	5.0	14.46	94	9.30	266

Note A: Annual Levelized cost of generation at 2% interest without Microgrid or Backup Costs included

Note B: Capital Cost Method for Nuclear Fuel Model – This is explained in Appendix I.

Note C: Continuous Feed Model for Nuclear Fuel Model - This is explained in Appendix I.

N

Task 4: Regulatory Issues

- Micro-reactor licensing likely to use NRC regulations
 - 10CFR 50 (CP + OL) or 10CFR 52 (DC + COL) could be used
- NEIMA required new license approach (Part 53) ongoing
 - Provide licensing flexibility: Traditional, Risk-informed, MCA bound
- There are current policy issues under consideration
 - Staffing requirements for operations/monitoring on-site or remote
 - External man-made hazards that need to be considered
 - Physical security requirements for the micro-reactor
 - Siting requirements near population centers
- Prototypes can demonstrate operability and safety

Task 5: Program Recommendations

- N
- Milestone based research program with reasonable timeline that would result in confidence that a FOAK plant could be built for about \$12,000/kWe
- A policy to coordinate building one or more FOAK demonstrations when there is confidence that the cost would be around \$12,000/kWe
- Requires ability of Government to independently assess
 viability of achieving cost targets

Task 5: Program Recommendations

- If FOAK construction program indicates that NOAK costs of ~\$4,000/kWe are achievable, Government should develop
 - An organizational approach that could manage the construction and operation of a large number of micoreactors
 - An appropriate financing mechanism that would provide the ability to recover revenues
- Even at low cost target, low financing costs are important
 - May require government ownership

Questions?

paul.wilson@wisc.edu

https://uwmadison.box.com/v/wi-microreactor-government

INSTITUTE FOR NOCLEAR ENERGY SYSTEMS

