# MARVEL Technology Review: Thermal Hydraulics and Safety Basis

October 19, 2022

Carlo Parisi, Ph.D.











#### Overview

- Thermal-Hydraulic Characteristics
- Modeling Tools
- Simulation Results
  - Steady State
  - Shutdown / Startup
  - Load Following
  - Beyond Design Basis Accidents
- Primary Coolant Apparatus Test (PCAT)



#### **General Thermal-hydraulic characteristics**

MARVEL microreactor thermal-Hydraulic (TH) characteristics : liquid-metal-cooled, low-power density, closed loop, series-parallel coupled natural circulation system



MARVEL 3D CAD



Natural circulation



MARVEL natural circulation scheme



#### **Primary Loop Description** Cover gas **Upper Head** zone **Key TH characteristics:** $\dot{m} = \left(\frac{2\beta_T Q \dot{g} \Delta H}{\bar{c}_n R} \rho_0^2\right)^{\frac{1}{3}}$ - Use of natural circulation Stirling Engine case (4) • No pumps $\Delta T_H = \left(\frac{RQ^2}{2\rho_0^2\beta_T g\Delta H\bar{c}_n^2}\rho_0^2\right)^{\frac{1}{3}}$ Better flow distribution NaK-Pb Intermediate Heat Higher reliability • Exchanger (4) Simplicity - Four loops Chimney - Core power: 85 kW<sub>th</sub> - Low power densities (average values): Downcomer (4) 14.3 kW/liter 0.03 MW/m<sup>2</sup> • 3.72 kW/m - Elevation difference between thermal centers: 1.13 m Minimization of circuit pressure drops - Total NaK mass flow: ~ 1.55 kg/s Core - Core average NaK temperature at hot full power (HFP): ~ 500°C - Operating pressure in the cover gas zone: ~ 2.87 atm gauge MARVEL x-z section **Microreactor**

#### **Secondary Loop Description**

- Key TH characteristics:
  - Four intermediate heat exchangers (IHX)
  - Removed power: ~20 kW<sub>th</sub> each
  - Double head, annular section
  - Single double-wall thermally insulated downcomer
  - Elevation difference between thermal centers : ~ 0.28 m
  - Minimization of circuit pressure drops
  - Pb mass flow: ~ 5.2 kg/s
  - Average Pb temperature at HFP: ~ 396°C





#### **Thermal-hydraulic Modeling & Simulation Tools**

- Modeling and simulation (M&S) strategy for safety analysis
  - Use **best-estimate** nuclear safety codes and commercial codes with **extensive nuclear pedigree** and **well-proven reliability**
  - Perform independent high-fidelity calculations using commercial computational fluid-dynamic (CFD) codes for selected system, structure, components (SSCs) for design validation
  - TH model validation using MARVEL Integral Test Facility (ITF) PCAT



## Thermal-Hydraulic Modeling & Simulation Tools

- RELAP5-3D thermal-hydraulic and neutronic model for steady-state & transient analysis
  - Includes primary & four secondary loops, guard vessel, shielding, air cooling riser
  - Core components: single subchannel + hot channel factors & four channels (different rings)
  - Reactivity coefficients for 0D neutronic module
  - Component materials (BeO, Be, Csteel, ZrH, etc.)
  - Control & protection systems for power ramps and scram



### **Design Limits**

- Acceptance criteria based on
  - Fuel and coolant temperature
  - To be verified by RELAP5-3D
- Stress and strain in the clad verified by dedicated thermomechanical analysis by RELAP5-3D-BISON coupled calculations

| Design<br>Criteria | Design Basis Events                         |                       |                                                 |                                                                                        |  |
|--------------------|---------------------------------------------|-----------------------|-------------------------------------------------|----------------------------------------------------------------------------------------|--|
|                    | Normal Operation                            | Anticipated<br>Events | Unlikely<br>Events                              | Extremely<br>Unlikely<br>Events                                                        |  |
| 1                  | Peak fuel centerline<br>temperature < 700°C |                       |                                                 |                                                                                        |  |
| 2                  | Peak fuel centerline temperature < 1050°C   |                       |                                                 |                                                                                        |  |
| 3                  | Bulk coolant < 650°C                        |                       |                                                 |                                                                                        |  |
| 4                  | Peak clad internal temperature < 650°C      |                       |                                                 |                                                                                        |  |
| 5                  |                                             |                       | Peak clad<br>internal<br>temperature<br>< 704°C | Peak clad<br>internal<br>temperature <<br>704°C (long<br>term), <788°C<br>(short term) |  |
| 6                  |                                             |                       | Bulk coolant < 704°C                            |                                                                                        |  |
| 7                  | Core remains coolable                       | •                     | •                                               |                                                                                        |  |



#### **Hot Channel Factors**

- Hot channel factors (HCF) implemented in RELAP5-3D as safeguards against uncertainties (minimize margins)
  - Protect fission product barriers (fuel, clad, PCS)
- HCF derived from references based on past experiences and sensitivity analysis
- HCF to be updated
  - Using data from ITF PCAT
  - Before going critical
- Probabilistic treatment being considered for future uncertainty quantification (UQ) using RELAP5-3D and RAVEN codes



#### Normal Operation: Steady-State

- Steady-state results for <u>36 TRIGA fuel rods</u>, <u>1.414 in. OD (3.59 cm)</u>, <u>25</u>
   <u>in. (63.5 cm)</u> tall active core
- Reactor power: 85 KW<sub>th</sub>
- All structures in thermal equilibrium
- Good steady-state temperature margins

| Parameters - Primary & Secondary Side | Values |
|---------------------------------------|--------|
| NaK inlet core temperature, °C        | 465    |
| NaK outlet core temperature, °C       | 532    |
| NaK core temperature rise, °C         | 67     |
| Total mass flow, kg/s                 | 1.55   |
| IHX Pb minimum temperature, °C        | 386    |
| IHX Pb maximum temperature, °C        | 411    |
| Pb temperature rise, °C               | 25     |
| IHX Pb mass flow, kg/s                | 5.2    |



Temperature safety margins



#### **Normal Operation: Start-Up**

- Tentative **start-up** sequence:
  - Heat the system above the Pb melting point ( $T_{SYS} > 327.5^{\circ}C$ )
  - System steady state at reactor power = 7 kW,  $T_{avg}$  = 340°C
  - Perform power ascension to 85 kW in ~ 1 hr
    - 1.3 kW/minute
      - Max PCS temperature rates: ~2.1°C/min
      - Control Drums (CDs) reactivity rate: ~1.3 cents/min
    - Stirling generators sink temperature adjusted after ~ 1 hr







#### **Normal Operation: Load-Follow**

- Load-follow:
  - Simulate reaction to imposed power change: 100/75/100% P<sub>nom</sub> over ~2.5 hr period
  - All four Stirling engines in operation
  - Control system simulate reactivity insertion by control drums
    - Reactivity insertion vs. position
    - Drum rotation speed
  - Assumption: "turbine follow" mode → Stirling engines react to remove power produced by the reactor
  - Power changes imposed (simulate ± 5% P<sub>nom</sub>/min ramps)
    - PCS max temperature rate: ~2.0°C/min
    - CD reactivity rate: ~+/-1.4 cents/min



Reactivity





#### **Normal Operation: Normal Shutdown**

- Simulation of Normal Shutdown:
  - Reactor operating at HFP
  - Shutdown of four Stirling engines at t=60.0 sec
  - Decay heat removed via
    - Air riser (natural convection ~ 4.16 kWth)
    - Stirling engines (forced H<sub>2</sub>O circulation and heat losses ~ 4 kWth total)
  - System cooldown characteristics
    - Max rate: ~ 1.63°C/min (98.7°C/hr)
    - Structures max temperature reaches ~300°C at t = +24 hr
    - Estimated time for hot standby condition (340°C): ~2.5 hr







#### Start-Up & Shutdown

- Simulation of possible MARVEL operation during a weekend
- Start-up, operate for 24 hr, then shutdown



#### Postulated Accident Conditions: UTOP at HFP

#### Unprotected Transient Overpower (UTOP)

- Step reactivity insertion (0.4\$) → 1 CD out from critical position to the mechanical stops
- No scram
- Reactor power peaks ~4  $P_{NOM}$  (340 kW) at t = 14 s
- Negative reactivity feedbacks counters the power surge
   → system back to a steady higher power and higher temperature by t = ~ 15 min
- No safety concerns until scram (not needed)







### Postulated Accident Conditions: UTOP at CZP

- Unprotected Transient Overpower at Cold Zero Power (CZP), 20°C
  - Step reactivity insertion (1.3\$) → 1 CD out from critical position to the mechanical stops
  - No SCRAM
  - Reactor power peaks ~40  $P_{NOM}$  (3.4 MW) at t = 2 s
  - Negative reactivity feedbacks counters the power surge
  - No safety concerns during first 5 minutes, reasonably also later
    - Temperatures stay safely low
    - Mechanical effects of fast temperature ramp rate being verified







#### **Postulated Accident Conditions: ULOHS**

#### • Unprotected Loss of Heat Sink (ULOHS)

- All four Stirling engines heat removal lost at t = 1.0 s
- No scram
- Reactor cooled only by heat losses through guard vessel only (~4.1 kW) → conservative assumption
- Reactor shutdown by intrinsic negative reactivity
- Return to power caused by fuel cooldown
- Core power < guard vessel heat losses for first 24 hr
- No safety concerns during at least first 24 hr
- Beyond 24 hr, reactor power = heat losses (new equilibrium)







### **Postulated Accident Conditions: ULOF**

#### **Unprotected Loss of Flow (ULOF)**

- Total blockage of all 4 downcomers at time t = 0.0 s (assume catastrophic damage of all four IHXs)  $\rightarrow$ 
  - **Not credible event** (see structural mechanics presentation)
  - Bounding **partial loss of flow** events (intermediate design review comment)
- No scram
- Loss of secondary side (IHX) heat removal capabilities —
- Reactor cooled **only** by heat losses through guard vessel —
- Reactor power self-reduced
- Hot spot clad temperature not of safety concern due to the reactor self-shutdown features
- **No safety concerns** : data shown for the first 24 hr, beyond that reactor power = heat losses (new equilibrium)

550

500

450

350

300

4

.

12

Time (hrs)

O







#### **Postulated Accident Conditions: ULOCA**

- Unprotected Loss of Coolant Accident (ULOCA)
  - MARVEL reactor avoids by design the NaK level drop below the top of the core (core never uncovered) also during the break of the low-elevation components (downcomer, lower plenum)
  - Decay heat removal capabilities bounded by ULOF calculations



#### Summary of MARVEL Analysis

- RELAP5-3D system analysis shows reliable and stable MARVEL performances during start-up, normal operation and load following and shutdown
- Very conservative accident analysis shows that all minimum safety margins are > 0

| Transient  | Minimum Margins (°C)         |                    |                    |  |
|------------|------------------------------|--------------------|--------------------|--|
|            | Clad<br>(short / long terms) | Fuel<br>Centerline | Coolant<br>Boiling |  |
| UTOP - HFP | 121 / N/A                    | 368                | 298                |  |
| UTOP - CZP | 394 / N/A                    | 651                | 413                |  |
| ULOHS      | 213 / 129                    | 470                | 385                |  |
| ULOF       | 134 / 50                     | 395                | 300                |  |



#### **PCAT General Thermal-Hydraulic Characteristics**

- PCAT is the electricallyheated test loop of MARVEL
  - Full scale (1:1 elevation, power)
- General TH characteristics

   are similar to MARVEL :
   liquid-metal-cooled, low power density, four closed
   loop, series-parallel coupled
   natural circulation system



PCAT 3D CAD



PCAT natural circulation scheme



#### **Rationale for PCAT**

- Capability of RELAP5-3D in modeling single-phase natural circulation well assessed by different projects and publications performed by several research institutions
  - PCAT RELAP5-3D analysis independently validated by high-fidelity tools (CFD analysis by S. Yoon, J. Kim) and first-principle independent calculations
- Rationale for PCAT:
  - Reduce the uncertainties in the modeling assumptions
    - Heat transfer coefficients (HTC) in core, IHX
    - Pressure drops at different Reynolds number
    - Heat losses at the Stirling engines
  - Combined systems dynamic (three coupled loops)
    - IHX performance
    - Stirling engines operation





Analytical model for natural circulation



#### **Rationale for PCAT**

- PCAT is heavily instrumented to allow validation of the TH model and extrapolate MARVEL TH performances
  - Three thermocouples (TC) per each heater
  - Three TC for core barrel
  - Three TC per loop
  - Fine temperature distribution measurement in the lower plenum
  - Five TC per IHX
  - One Flowmeter per loop
- PCAT in operation by beginning of calendar year 2023





