# **GAIN Microreactor Program Workshop**

### **MRP: Demonstration Support and Capabilities**

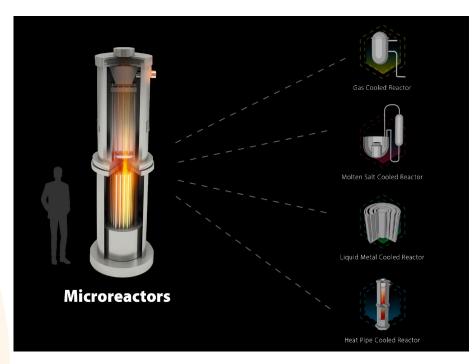
Piyush Sabharwall, Ph.D. Microreactor Technical Area Lead US DOE – NE MRP Program

May 13<sup>th</sup> 2021












### **Technical Area Overview**

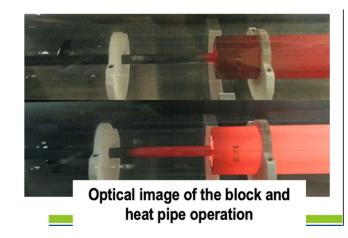
# Demonstration Capabilities Technical Area includes two major R&D activities:

- **1.** Non-Nuclear Testing and Demonstration:
  - Single Primary Heat Extraction and Removal Emulator (SPHERE)
  - Microreactor AGile Nonnuclear Experiment Testbed (MAGNET)
- 2. Microreactor Applications Research Validation and EvaLuation (MARVEL)









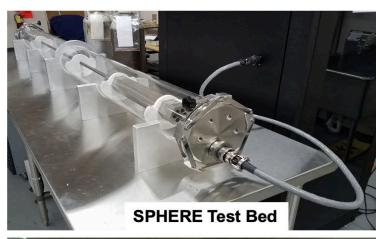


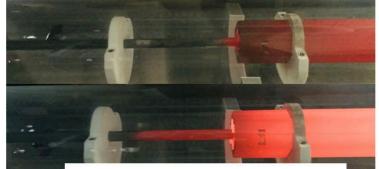

# Single Primary Heat Extraction and Removal Emulator (SPHERE)

- Provide capabilities to perform steady state and transient testing of heat pipes and heat transfer:
  - Wide range of heating values and operating temperatures
  - Observe heat pipe startup and transient operation
- **Develop** effective thermal coupling methods between the heat pipe outer surface and core structures
- Measure heat pipe axial temperature profiles during startup, steady-state, and transient operation using thermal imaging and surface measurements






| Parameter          | Value                                                          |
|--------------------|----------------------------------------------------------------|
| Length             | 243 cm                                                         |
| Diameter           | 15 cm                                                          |
| Tube material      | Quartz                                                         |
| Connections        | Flanged for gas<br>flow and<br>instrumentation<br>feed through |
| Maximum<br>power   | 20 kW                                                          |
| Max<br>Temperature | 750 C                                                          |
| Heat Removal       | Passive radiation or<br>water-cooled gas<br>gap calorimeter    |




### Accomplishment



- SPHERE is a heat pipe testing capability that allows for detailed testing of the operation and heat transfer for heat pipes to provide performance data and validation data for modeling and simulation.
- The initial testing consisted of vacuum operation of a sodium heat pipe. The temperature was measured at 10 evenly spaced points along the heat pipe.
- Additional exterior thermocouple measurements were also taken on the exterior of the heat pipe to confirm the similarity of thermowell temperatures to exterior heat pipe temperature measurements.
- The initial test was successfully completed, and results measured at INL are consistent with the data from the manufacturer.





Optical image of the block and heat pipe operation

#### IDAHO NATIONAL LABORATORY

PHERE Assembly and

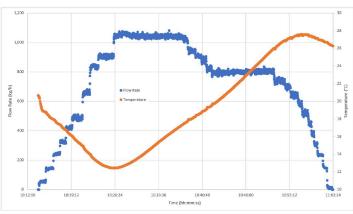
### Microreactor AGile Non-nuclear Experimental Testbed (MAGNET) Value

- General-purpose test bed for performance evaluation of microreactor design concepts (heat pipe, gas-cooled, other).
- Provide detailed reactor core and heat removal section thermal hydraulic performance data for prototypical geometries and operating conditions.
- Demonstrate interface of heat removal section to power conversion system for power generation.
- Provides for integrated materials, instrumentation testing
- Co-located with integrated energy systems R&D capabilities





| Parameter       | Value                                                                              |
|-----------------|------------------------------------------------------------------------------------|
| Chamber Size    | 5 ft x 5 ft x 10 ft                                                                |
| Heat Removal    | Liquid-cooled chamber walls, gas flow                                              |
| Connections     | Flanged for gas flow<br>and instrumentation<br>feed through and<br>viewing windows |
| Coolants        | Air, inert gas (He, N2)                                                            |
| Gas flow rates  | Up to 43.7 ACFM at 290 psig                                                        |
| Design pressure | 22 barg                                                                            |
| Maximum power   | 250 kW                                                                             |
| Max Temperature | 750 C                                                                              |
| Heat Removal    | Passive radiation or<br>water-cooled gas gap<br>calorimeter                        |




### **MAGNET Accomplishments and Challenges**

- On December 23, INL staff and members of the construction subcontractor team started MAGNET to demonstrate system operation
  - Pressurized system piping to 12 bar and started compressor at minimum speed
  - Ramped compressor speed in increments of 5 Hz to full speed
- On January 20, INL staff installed temporary ceramic fiber heater to system piping for final acceptance test
  - Pressurized system to 20 bar, energized heater, and started compressor
  - Heated system to 120 ° F and performed 30-minute system leak check
- INL quality engineer **accepted** the test
- Insulation installation started



**Demonstrating System Operability** 



System Operational Test Flow Rate And Temperature



### MARVEL – Microreactor Applications Research, Validation & Evaluation Project

- Project Goal: Rapid development of a small scale microreactor that provides a platform to research and development on unique operational aspects and integration with end use applications of microreactors
- Supported by the DOE Microreactor Program and National Reactor Innovation Center
  - **MRP**: Engage with microreactor end-user companies
  - NRIC: Develop and exercise capabilities to execute reactor demonstration projects
- Project Schedule: Planned operations by late 2022 early 2023
- Anticipating applications testing:
  - Microgrid integration
  - Remote power and heat for computing, water, buildings, etc.
  - Currently engaging interested end users for testing activities



A conceptual rendering of the MARVEL fission reactor at INL's Transient Reactor Test (TREAT) facility.



### **MARVEL Reactor Overview**



| Parameter                 | Value                    |
|---------------------------|--------------------------|
| Reactor Thermal Power     | 100 kW                   |
| Nominal Electrical Output | 20 kWe                   |
| High-grade heat           | ~45 kWt at 450 C         |
| Coolant                   | NaK, natural circulation |
| Fuel                      | UZrH                     |
| Reactivity control        | 4 control dums           |
| Location                  | INL, TREAT Facility      |





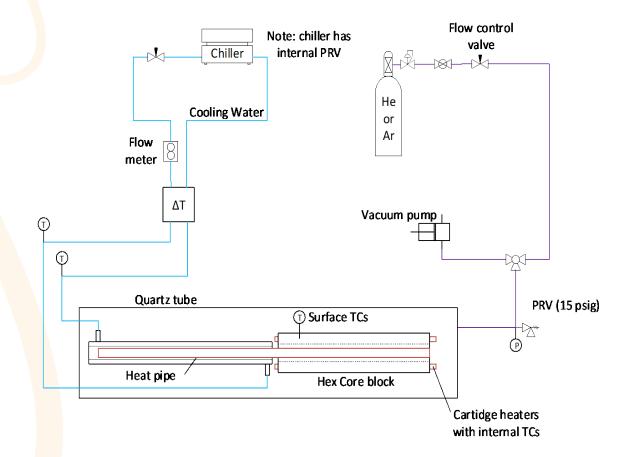
### **GAIN Microreactor Workshop**

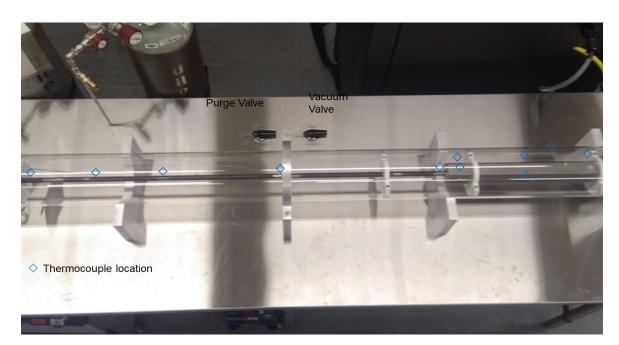
May 13, 2021

Jeremy Hartvigsen | Research Engineer










## **SPHERE System Design**

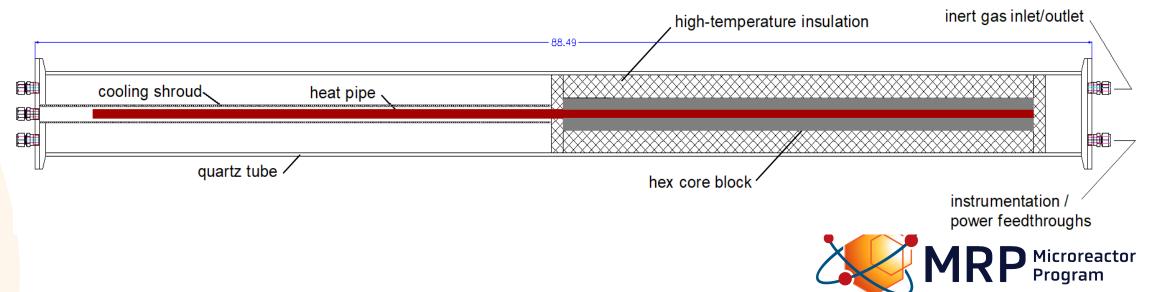
- 6" diameter 8' long quartz tube
- Maximum power rating of 10 kW
- Vacuum, Helium, Nitrogen, or Argon atmosphere







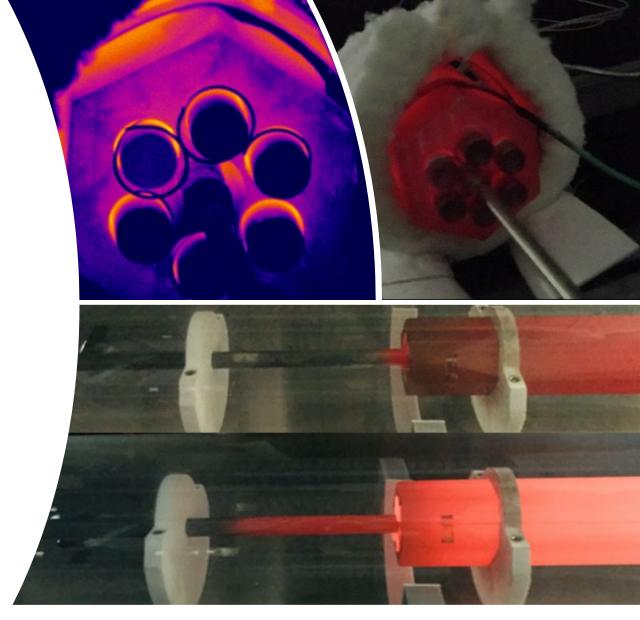
# **SPHERE MAJOR EQUIPMENT LIST**


- Ohio Semitronics, Model PC5-118X5Y25; single phase, 2-wire, 0– 150 VAC, 0-25 A, 5-sec response for zero-crossing signal
- National Instruments PXI data-acquisition system
- Watlow Din-A-Mites, 100–240 VAC, 24 Amp, single-phase 4–20 mA control input
- Watlow RMC temperature controllers
- Watlow FIREROD cartridge heaters
- Flow Technology turbine flow meter, Model FTO-5NIXW-LHC-5 with linearization electronics, Linear Link RF input, 0–10 VDC output
- Small vacuum pump for removing air from test fixture (quartz tube enclosure), prior to back-fill with inert gas
- ThermoFisher Thermoflex TF 2500, 2.5 kW cooling capacity, up to 4 gpm water flow rate.



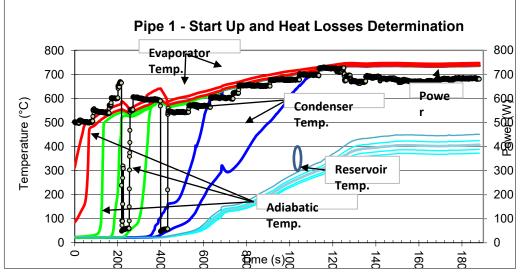


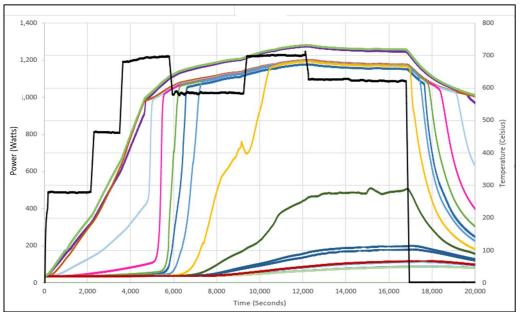
# SPHERE: Single Heat Pipe Experiments Objectives


- Single heat pipe experimental capability has been established at BCTC
- Document heat pipe thermal performance under a wide range of heating values and operating temperatures
- Observe heat pipe startup and transient operation
- **Develop** effective thermal coupling methods between the heat pipe outer surface and the core block and between the cartridge heaters and the core block
- Measure heat pipe axial temperature profiles during startup, steady-state, and transient operation using thermal imaging and surface measurements
- Measure core block and heater temperatures during heat pipe operation
- Measure heat removal rates from heat pipe condenser and compare to total heater power input



# **SPHERE: ACT Heat Pipe**


#### **ACT Heat Pipe**


- Pipe material: SS 316
- Geometry: smooth-wall tube, proprietary wick
  - Wick: sintered stainless steel
- Length: 2 m, Diameter: 0.625-in.
- Working fluid: sodium, non-condensable inert gas
- Operating temperature, ~740°C
- Heat-removal rating: 1 kW





### **Testing of Commercial Heat Pipe**





#### Accomplishments

- Verify instrumentation and controls
- NEAMS and SOCKEYE use the data from the testing to validate and tune their models
- Experimental data correlates with manufacturer data
- Initial data from shakedown testing being used to help with tool validation

#### **Ongoing Activities**

- Interlayer gap conductance testing
- Heat pipe orientation experiments





# Microreactor AGile Non-Nuclear Experimental Test Bed (MAGNET)

**GAIN Microreactor Workshop** 

May 13, 2021

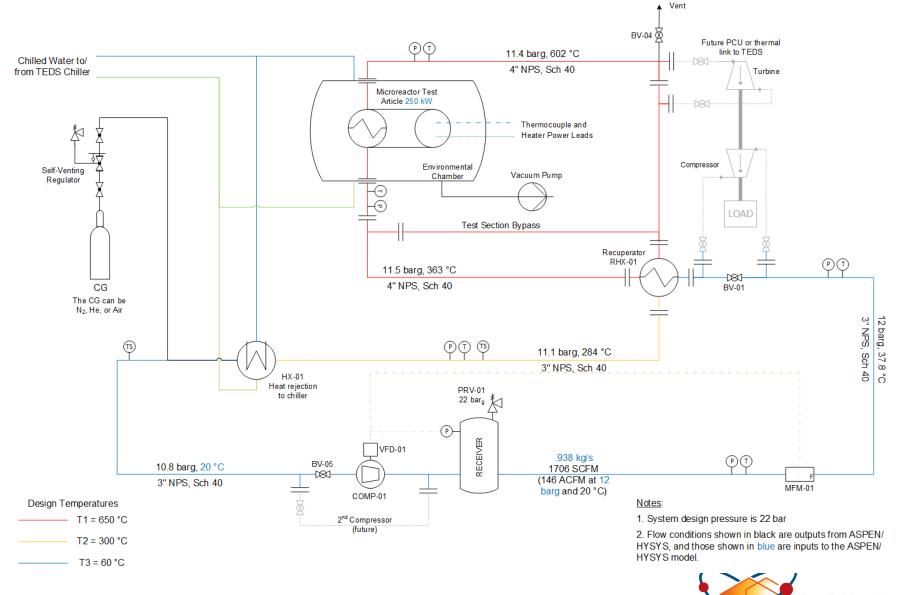
T.J. Morton | Engineering Lead












### **MAGNET** Objectives

- General-purpose, non-nuclear test bed for prototype microreactor design evaluation
- Provide thermal-hydraulic performance data
  - Test article and flow loop temperature and pressure data for start up, shut down, steady state, and transient operations
  - Displacement and temperature data for design performance verification and accompanying analytical model validation (V&V)
- Provide expansion capability to demonstrate an integrated power conversion unit (PCU)
- Identify, develop, and test advanced sensors for potential autonomous operation
- Enhance readiness of public stakeholders, particularly DOE laboratories and the U.S. NRC, to design, operate, test, and license high-temperature microreactor components



### **MAGNET Process Flow Diagram (PFD)**



MRP Microreactor Program

### **MAGNET Basic Design Parameters**

- Support electrically-heated test articles of ≤ 250 kW
- Support test articles with temperatures ≤ 750 °C
- Provide closed-circuit, inert-gas, coolant flow loop (N<sub>2</sub> or He)
- Flow loop design temperature: 650 °C (see PFD for more information)
- Flow loop design pressure: 22 bar<sub>g</sub>
- Ultimate heat sink: chilled water at 44 °F
- 350 kW recuperator (compact platelet heat exchanger)
- Environmental chamber for test article: vacuum (~10<sup>-4</sup> torr) or back-filled inert gas (atmospheric pressure) 5 ft x 5 ft x 10 ft long inside dimensions
- Expandable for integration of power conversion unit or other systems via heat exchanger
- National Instruments PXI data acquisition and control



### **Construction Progress**



Construction delays due to late arrival of recuperator and unforeseen problems with high-temperature thread sealant (instrumentation thread-o-lets) pushed start back to June of 2021

- December 2021 pressurized system to 12 bar<sub>g</sub> and ran compressor for one hour to demonstrate system operability
- March 2021 completed pneumatic test and inspection of all welded joints (test pressure 355 psi<sub>g</sub>)
- Insulation work ongoing in parallel with resolving instrumentation port sealing





### **Future Work**

#### **MAGNET** Experimentation

- Finish Engineering design for PCU integration:
- Complete single heat pipe test article campaign:
- Construction work to integrate TEDS with MAGNET\*:
- Perform He component testing for commercial vendor:
- Install 37 heat pipe test article in MAGNET:
- Complete 36 heat pipe test article test campaign:
- Design MAGNET upgrades based on operating experience:
- Resume He component testing for commercial vendor:

June 2021 September 2021 - TBD September 2021 - TBD September 2021- March 2022 April 2022 – May 2022 ~September 2022 May 2022 – September 2022









#### **GAIN Microreactor Workshop**

May 13<sup>th</sup>, 2021

Yasir Arafat | MARVEL Technical and Project Lead











### MARVEL Project Goals and Objectives

#### **Project Goals:**

 Rapid development of a small-scale microreactor that provides a platform to test unique operational aspects and applications of microreactors

#### **Primary Objectives:**

- Project shall produce an operational microreactor in the most accelerated timeline possible
- Project shall result in an operational reactor that produces combined heat and power (CHP) to a functional microgrid

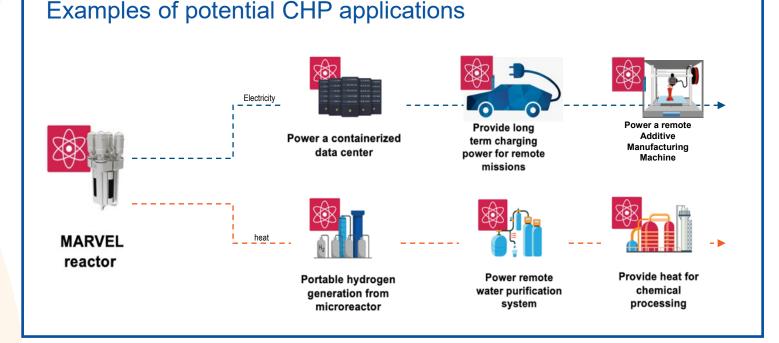
#### • DOE Sponsor Programs:



Create momentum, champion rapid technology maturation, and engage microreactor end-user companies.



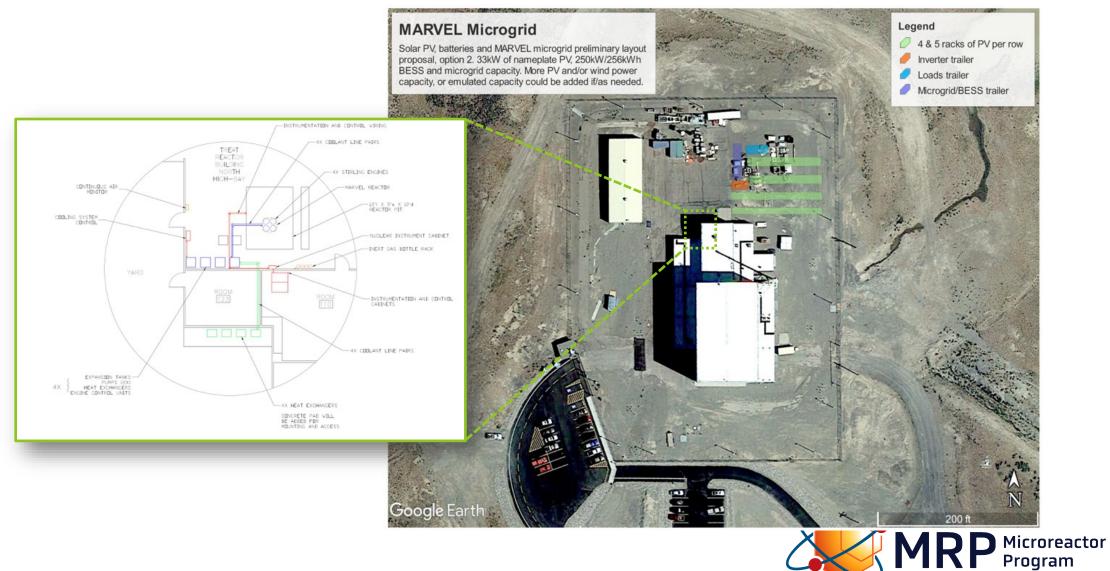
Develop and exercise capabilities to execute reactor demonstration and demonstrate integrated energy systems and non-electric applications.




MARVEL Project Burndown = 11 months



### **Microreactor Applications R&D**


- Engage potential end user companies (B2B, B2C): interested in bringing application assets for testing and ultimate deployment
- End-users are actively being engaged to plan for integration tests: 20 companies




List of companies engaged: ✓ Dell ✓ Tesla ✓ Electrify America ✓ Chargepoint ✓ExxonMobil ✓Oxeon ✓Bloom ✓ Fuelcell Energy ✓ Envoy Public Labs ✓ Fastman/Kodak ✓GSE ✓ Shell ✓ Chevron ✓AVEC ✓ Idaho Power ✓ Southern Company ✓Holtec ✓Battery 500 ✓ Proton Conduction H2 ✓LIFEPo4



### Integration of MARVEL with a Microgrid





### **MARVEL Environmental Assessment (EA)** to Pioneer Reactor NEPA

- **Pursuing EA** (not EIS) for DOE Authorization ٠
- **Completed** ٠
  - 1. NRIC submitted legal white paper to justify basis of EA for reactor to DOE-ID
  - 2 Environmental Assessment Determination received from DOF-ID
  - Technical Studies and Evaluations
  - 4. Purpose and Need in Project Review
  - 5. Consultations with Tribal (Shoshone, Fort Hall) and State (Governor's Office, Congressional Staffers)
  - 6. Complete Draft EA and 10 technical ECARs (Jan 11)
  - 7. DOE review of Draft EA
  - 8. DOE release Draft EA for public comments
  - 9. Address Public Comment (Feb 9)
  - 10.DOE-ID drafted Final EA and FONSI



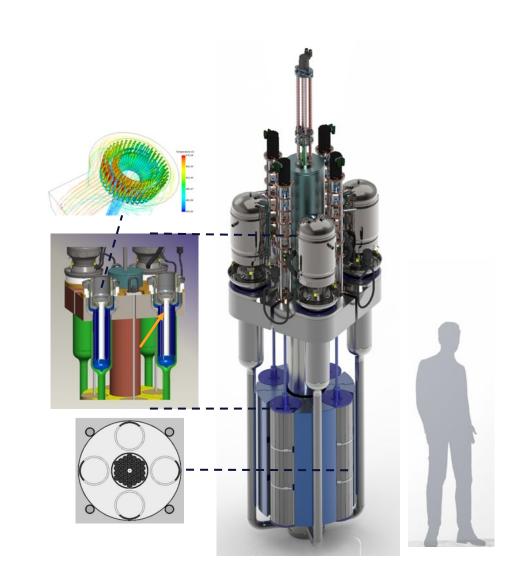
Title: "Draft Environmental Assessment for the Microreactor Applications Research, Validation and Evaluation (MARVEL) Project at Idaho National Laboratorv" Link: DOE Office of Energy Press: ANS Newswire; Local News 8



#### **Status** (blue = complete)

### **MARVEL Reactor Parameters**

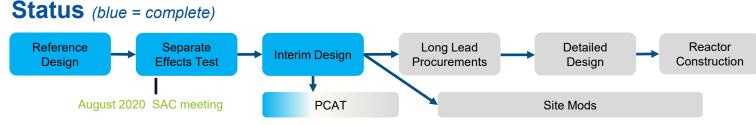
#### Inspired by SNAP 10A core geometry: 37 pins


- Thermal Power 100 kWth
- Four ex-core reactivity control drums
- Modified TRIGA fuel- UZrH<sub>1.6</sub>
- **Primary Circulation** (natural convection) NaK eutectic
- Secondary Circulation (natural convection) PbBi eutectic
- Four helium Stirling engines @ 400–500 C inlet T
  - Electrical Output ~20 kWe
  - Max High Grade heat ~ 45 kWth @ 450°C
  - Max Low Grade heat ~ 75 kWth @ 50°C

**Site:** TREAT Storage Pit (8'x12'x10') and TREAT control room



Control Room


Storage pit → T-REXC TREAT microReactor EXperiment Cell





### **Design & Testing Updates**

- June 2020: Reference Design Completed
- July-Sept. 2020: Separate Effect Tests Performance
- Oct. 2020–Jan. 2021: Integral Effects Test (PCAT) Designed •
- Oct. 2020–Jan. 2021: Interim Design Reports Archived







Loaded partial-length pin, Length: 65.38 cm (25.74"), 17 surrogate fuel slugs, 2 surrogate reflectors, ~4.9g Na

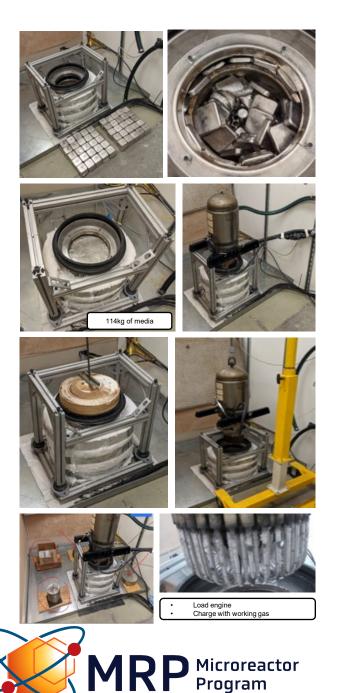
MARVEL Control Systems

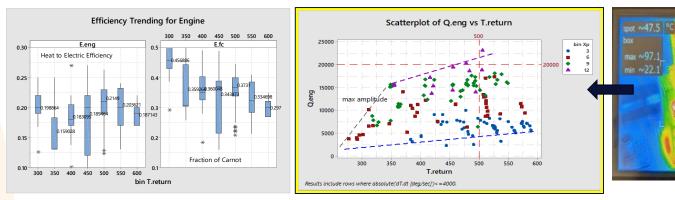
**Power Conversion System** 





Control Drums prototype


Stirling Engine



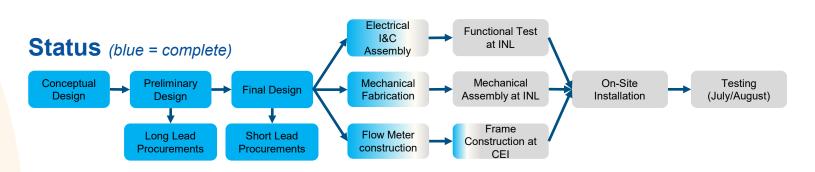

### **Risk Reduction Tests**

- LBE-Stirling is Novel
- Stirling Interface Characterization
  - Operate on QEC brake no 'customer' load
  - Evaluate hot start and cold stop (140–180°C)
  - Load/unload convertor into fluid
  - Evaluate vibration transfer (qualitative) to fluid
  - Approximately confirm ROM convection coefficient
  - NDE Review tubes for any evidence of attack (post-operation)







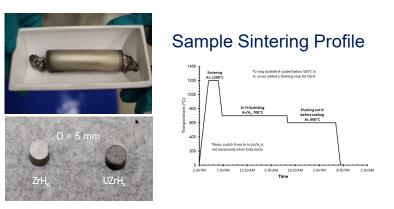

### Integral Effects Test "PCAT"

• Primary Coolant Apparatus Test (PCAT)

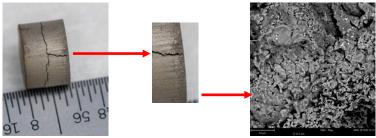
- Non-Nuclear Prototype (i.e., physical twin of reactor)
- Full-Scale, 100kWth
- Build at INL
- Tested at Creative Engineers, Inc. (in PA)

#### **Objectives**

- Flow and heat transfer characteristics
- Benchmark modeling & simulation
- Streamline manufacturing methods
- Train operators






### **Fuel Fabrication (INL, LANL)**

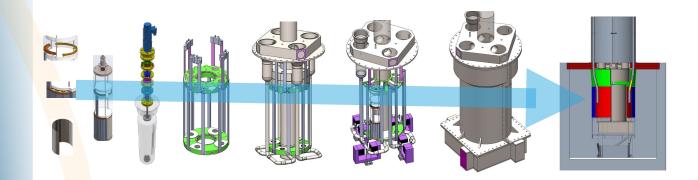
- Uranium Zirconium Hydride fuel fabrication
- Fuel R&D at INL and LANL
  - ZrH and DUZrH sintering demonstrated
    - Direct hydride, crush/grind powder, press, sinter
    - 30, 35, 40 wt% blend ZrH and UH
    - Analytical Chemistry: XRD, LECO
  - Challenge
    - Fuel Density
    - Oxygen content
- Fuel Fabrication entails both fabrication and schedule risks
  - Mitigation:
    - Direct hydriding R&D
    - TRIGA International procurement feasibility for fuel pellet supply
  - Decision point this FY



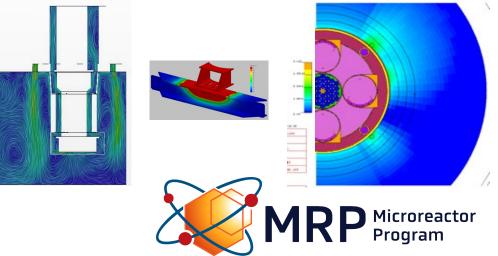
Cracking of pellets likely due to the volume expansion during hydride formation



Sample 03152021-UZrHx, 1075°C, 5 hour (Ar), 625°C, 8 hours (9.4/0.6 LPM Ar/H<sub>2</sub>). Pressed at 450 Mpa 40 wt% U

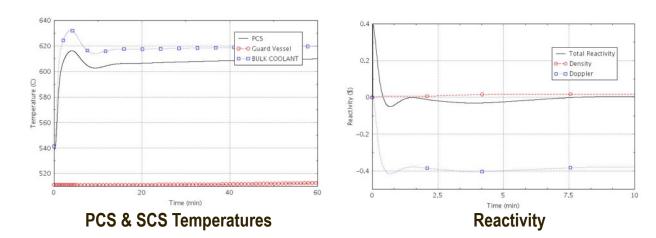


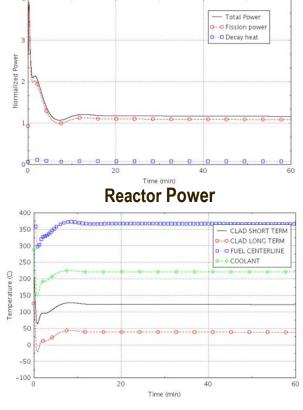




### Interim Design (~ Preliminary Design)

# Engineering Verification Phase: Interim Design Reports, Rev 0 Complete

- Fuel
- Nuclear Design
- Reactivity Control System
- Instrumentation & Control System
- Power Generation System
- High Grade Heat Extraction System
- Thermal Design
- Reactor Structure





- Analyses (preliminary)
  - Thermal performance simulation using RELAP5-3D
  - Preliminary Accident Analyses using RELAP5-3D, BISON
  - Reactor physics shutdown margin, diff. control drum worth, xenon buildup, etc., using MCNP, SERPENT
  - Flooding, Source term, activation, and personnel dose analyses
  - Structural analyses: analytical and finite element analyses (FEA)
  - Conjugate heat transfer model: T distribution and dP



### Safety analysis – UTOP

- Transient Analyses: Unprotected Transient
  Overpower
  - Step reactivity insertion (0.4\$) → 1 CD out from critical position to the mechanical stops
  - No SCRAM
  - Includes Hot Channel Factors
  - Reactor power peaks  $\sim 3.9 P_{NOM}$  at t = 24 s
  - Negative reactivity feedbacks counters the power surge → system back to a steady higher power (1.16 P<sub>NOM</sub>) and higher temperature by t = ~ 15 min
  - No safety concerns during 1 hr long transient Manual Scram Terminates Sequence

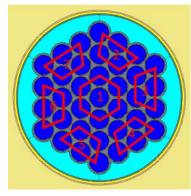




#### **Temperature Safety Margins**



### **Fuel Load and Startup: Validation**


- **Fuel Load:** 1/M approach to critical will be used to prevent inadvertent criticality
  - BF3 startup channels used, along with neutron source
  - The loading of the fuel always begins by loading the fuel in the highest worth positions

#### • Measure reactor physics parameters

- differential and integral control drum shim worths
- critical drum shim position
- the <u>shutdown margin</u> and <u>excess reactivity</u> are calculated and compared to the technical specifications

### • **Perform heat balance calibration** of the nuclear instruments

- Performed at Low temperature for accuracy
- Temperature measurements will indicate heat losses in system → <u>decay heat removal capability</u>
- Testing of Power Production
  - Performed at high temperature, to start Stirlings
  - Measure power incrementally from 0-100%
  - Validate power produced, engine efficiency and system performance





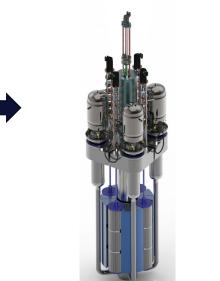


### Next Steps (months 11+)

#### FY 2021-Q3

- PCAT Fabrication
- Preliminary Safety Analyses
- FONSI (approval for long lead procurement) by DOE-ID

#### FY 2021-Q4


- Preliminary TREAT SAR Addendum
- PCAT Assembly
- Detailed Design for long lead
  procurement
- Fuel Fabrication Process
  Finalization

#### **FY 2022**

Site Prep, Fuel Production, Reactor Construction

#### FY 2023

Fuel Load, Criticality, MARVEL Microgrid







#### **Key Project Challenges**

- Fuel R&D and fabrication risks
  - Fuel R&D may not achieve formulated specifications
  - Fuel schedule too long
  - External supplier limitations
- Lack of precedence makes it challenging for project estimation
  - Bottom-up cost estimate based on detailed schedule helps increase confidence
- Team Credit:







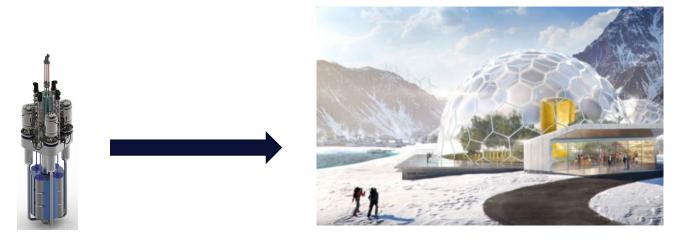








#### Potential Areas Where Industry Can Leverage MARVEL


- Detailed Engineering
  - Reactivity Control Systems
  - Instrumentation & Control Systems
  - Fuel Design
  - Startup Plan
  - INL Engineering Job Process
- Model Based Systems Engineering (NRIC)
  - Requirements Management
  - Risk Management
- NEPA (for DOE Authorization)
  - EA Process
  - Technical Studies
- Safety Basis (for DOE Authorization)
  - Safety Design Strategy
  - Safety Analyses (design dependent)



## **Thank You**

#### > NEPA

- Reactor Site
- Microgrid and end users
- > Design, Testing, Fuel
- Next Steps & Challenges



**Contact Information** 

## **Yasir Arafat**

MARVEL Technical & Project Lead

yasir.arafat@inl.gov | 412-736-4886 (cell)



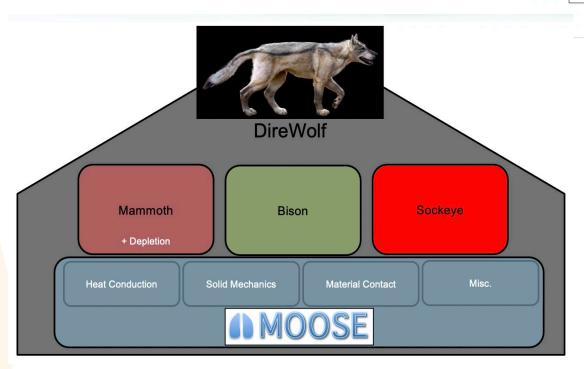
## Demonstration Capabilities Path Forward and Opportunities

Piyush Sabharwall, Ph.D. Microreactor Technical Area Lead US DOE – NE MRP Program May 13<sup>th</sup> 2021

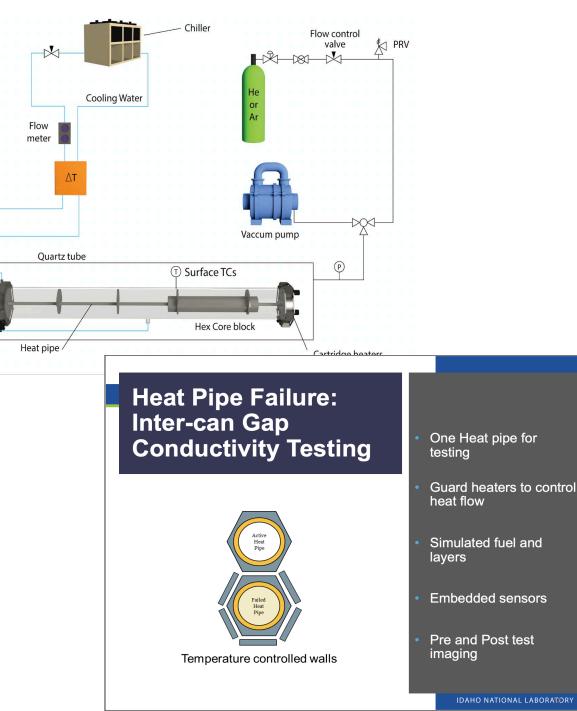












### Summary of FY-21

#### SPHERE FY 2021

- Demonstrate Initial Startup (Shakedown Testing)
- Gap Conductance Testing Preliminary Safety Analyses
- Working Closely with DOE-NEAMS Prog to Jointly Support V&V Activities

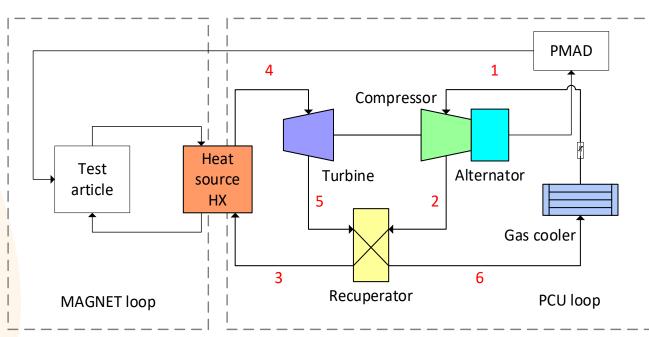


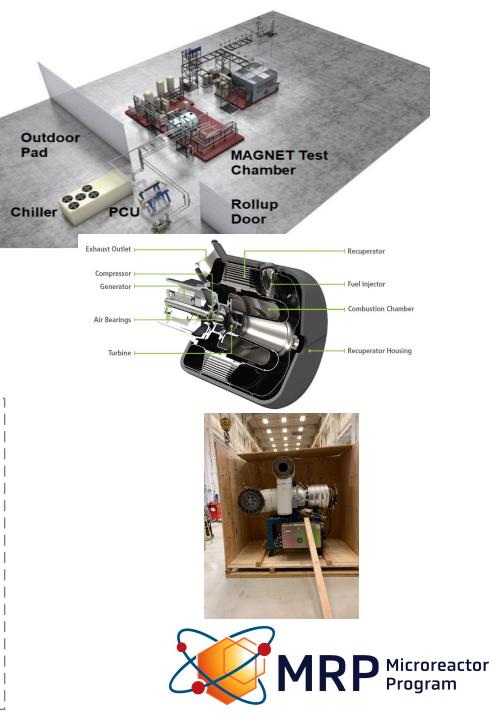
T



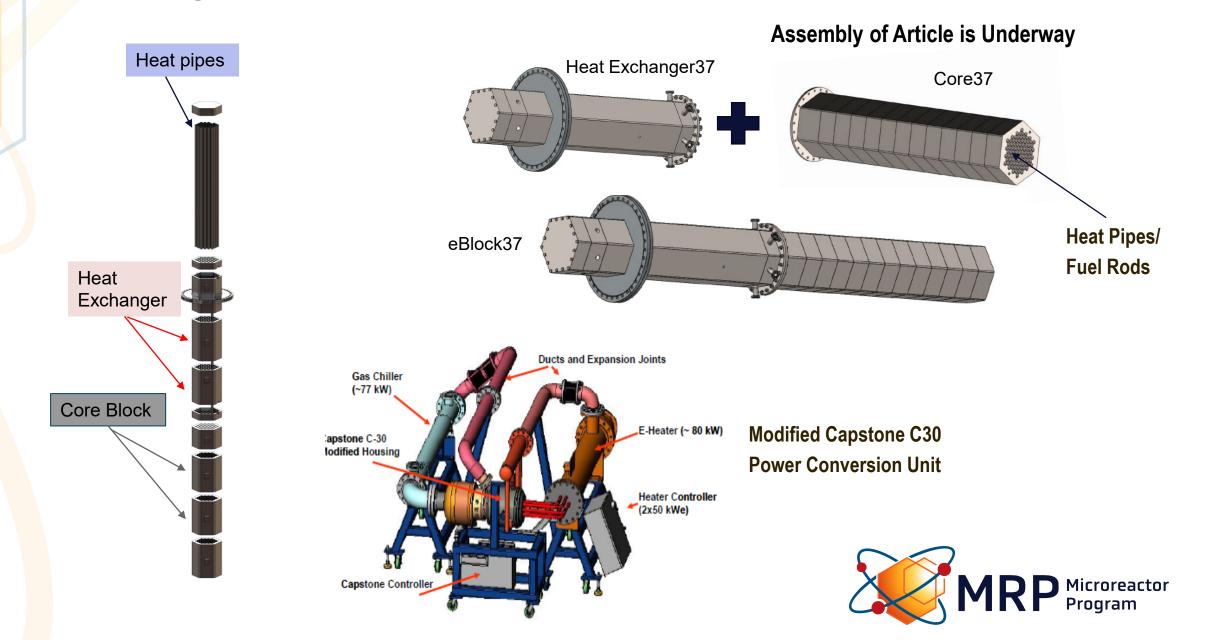
## Summary of FY-21

#### **MAGNET FY 2021**


- Demonstrate Initial Startup (Shakedown Testing)
- Single HP Test Article
- Complete engineering design for PCU integration in MAGNET



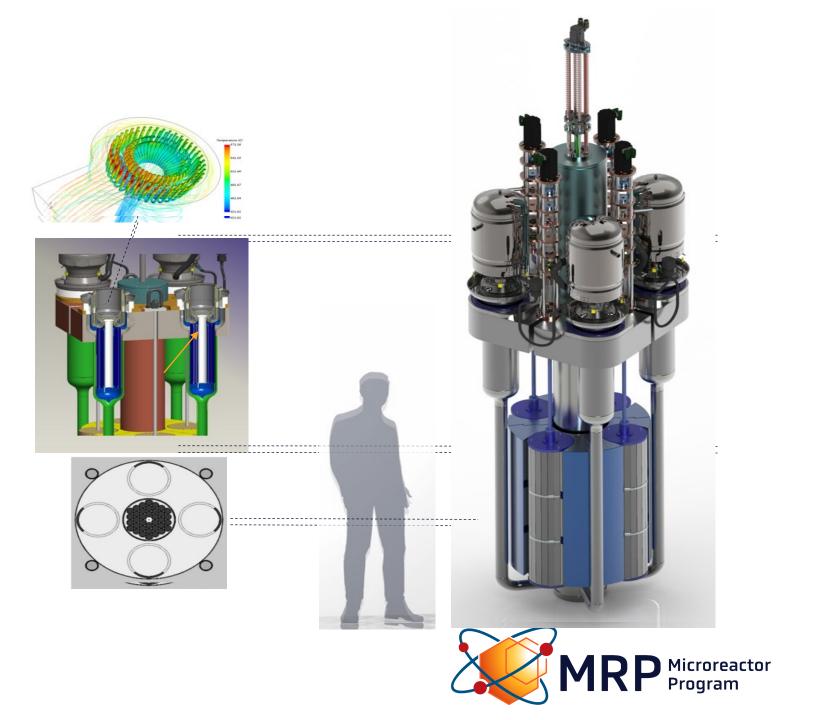




#### Microreactor Power Conversion Integration and Testing

- Integration of a modified Capstone C30 turbine-alternator-compressor unit into MAGNET
  - Will provide researchers with the ability to evaluate the test article heat transfer under representative operating conditions with the transient system behavior associated with a closed Brayton cycle PCU
  - Eng'g design for installation underway





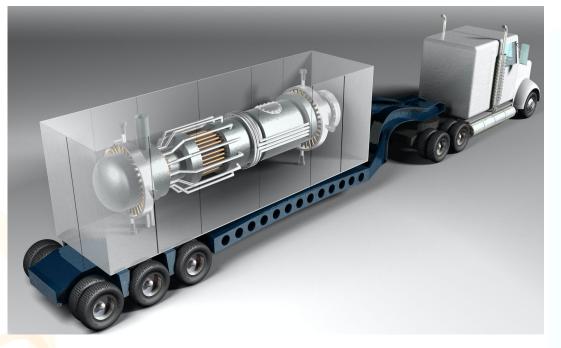

## **37 Heat Pipe Test Article Will Allow Us to Understand Heat Pipe to Heat Exchanger Interface**

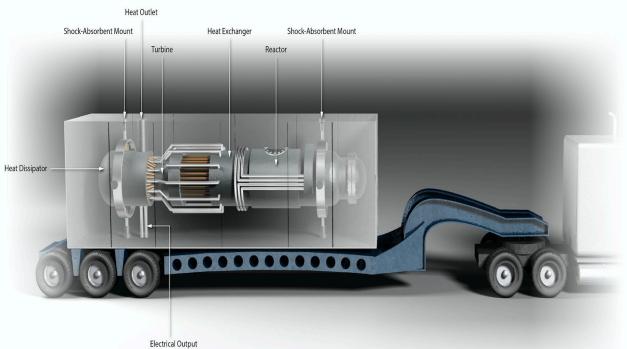


### Summary of FY-21

#### MARVEL FY 2021

- PCAT Fabrication
- Preliminary Safety Analyses
- Detailed Design for long lead procurement
- Fuel Fabrication
  Process Finalization





# Potential Areas Where Industry Can Leverage SPHERE and MAGNET (Non-Nuclear Test Bed)

- Heat Pipe Thermal Performance
  - Startup and Shutdown
- Studying Cascading Failure and Its Effect
- High Temperature and Pressure Testing
  - Prototype microreactor design testing
  - Component Testing
- Instrumentation and Control
  - Advanced Manufactured Test Articles
  - Advanced Manufacturing Sensor Development
- Verification and Validation
  - Concepts with low TRL levels for better understanding
  - Addressing Technical Gaps and Data Requirement
- Interface and Coupling Different Systems
  - Heat Exchanger
  - PCU Integration
- Safety Basis
  - Design Margins









#### MRP Technical Lead: Piyush.Sabharwall@inl.gov

Credit & Acknowledgement







