

Molten Salt Reactor

Thermochemical and Thermophysical Property Database Development at LANL

Marisa Monreal

Inorganic, Isotope, and Actinide Chemistry – Chemistry Division Los Alamos National Laboratory

LA-UR-23-24429

Annual MSR Campaign Review Meeting 2-4 May 2023

LANL MSR Campaign Work: PuCl₃-NaCl

- LANL actinide-molten salt research program:
 - Chemistry & thermophysical properties: experiment and modeling
 - · Chlorides; expanding to fluorides, beryllium
 - Studies are across length scales
 - Pyroprocessing, nuclear energy, nonproliferation
 - **Sponsors:** MSR Campaign, LDRD, GAIN, Technology Commercialization Fund (TCF)
 - Collaborations: National Laboratories, universities, industry, NEAMS, SciDAC, FUTURE EFRC

MSR Campaign PuCl₃-NaCl Collaboration: INL, LANL, PNNL, ORNL

Investigate three compositions within

$PuCl_3$ -NaCl Shipment: INL \rightarrow LANL

- ✓ INL and LANL measuring the <u>same material</u>: INL-synthesized PuCl₃-NaCl eutectic
- INL shipped material to LANL: 10g shipped and introduced into glovebox line in the Plutonium Facility at LANL (PF-4) in September 2022
- Upon receipt, material purity check, for intervalidation with INL data:
 - Melting point by differential scanning calorimeter (DSC)
 - Still pending: Powder X-ray diffractometry (pXRD)

One of the fabricated capsules for shipping pelletized PuCl₃-NaCl eutectic from INL to LANL.

LANL Measurement of PuCl₃-NaCl Eutectic Melting Point

(1) INL/RPT-22-69181
(2) J. Phys. Chem., 1959, 63(10), 1774-1777
(3) ANL/CFCT-22/43(2022)

U.S. DEPARTMENT OF Office of NUCLEAR ENERGY

Density by Neutron Radiography at LANSCE

Flight Path 5 at Los Alamos Neutron Science Center (LANSCE)

Density by Neutron Radiography at LANSCE

Density by Neutron Radiography: PuCl₃-NaCl, December 2022

Sample move: PF-4 to LANSCE: December 9th, 2022

Density by Neutron Radiography: PuCl₃-NaCl, December 2022

Experimental Details:

- Beam Time on FP5: Dec 10th 20th, 2022
- Maximum Temperatures: ~950 °C
- Exposure Times: 1 min
- ~12- to 15-hour measurements per sample pair
- · Each pair was measured once
- Used gantry to move sample through FOV
- 4-5 <u>full</u> sample scans were performed at elevated temperatures for each samplepair; images of meniscus every ~5 °C

Density by Neutron Radiography: PuCl₃-NaCl, December 2022

Initial setup

- CarboLite Gero Furnace
- Si-Flat Panel Detector
- 250um resolution
- 15-minute exposures
- NO automation
- NO Remote controls
- Just radiographs...

Current setup (Pu Measurements December 2022)

- · State-of-the-art custom furnace that houses high-hazard samples
- New Imaging setup with ZWO-ASI cameras and ZEISS lenses.
 - < 1min exposures with ~50um resolution.
- Movies of melting and solidification process!
- Complete automation and remote control.
- · Neutron Attenuation images instead of just radiographs
- Image analysis underway; results will be published in joint manuscript with TerraPower

Density by Neutron Radiography: PuCl₃-NaCl preliminary <u>results</u>

ENERGY Office of NUCLEAR ENERGY

Density by Neutron Radiography at LANSCE

Density by neutron radiography general comments and features:

- Eyes on sample the whole time (watch out for bubbles!)
- Modular setup: multiple samples can be measured simultaneously, and samples can be swapped quickly (measurement times depend on furnace)
- · Can measure same samples multiple times
- Suitable for Pu materials
- Potential to extract additional information with more advanced neutron imaging techniques:
 - Temps and actinide density can be measured in-situ with neutron resonances (i.e., ERNI)
 - Material compositions can be measured with diffraction

Resulting 2-D areal density maps of isotopes

Energy-Resolved Neutron Imaging (ERNI) isotope mapping

Next steps: Drop Calorimetry for Integral Heat Capacities

A new methodology for measuring the ΔH_{mix} of molten salt systems has been developed using our Setaram AlexSYS-800 calorimeter.

Advantages/improvements:

- Elimination of any effects arising from materialatmosphere interactions
- Minimal salt-crucible interactions
- No further mixing needed after being introduced into the calorimeter
- Will be employed in future calorimetric studies on other molten systems containing actinides or fission products of interest.
- Will be utilized for **integral heat capacities** for molten salts systems containing Pu in June 2023. $\Delta_{meas} = \Delta_{trans} = \int_{T_1}^{T_2} C_p dT + Thermal Event (i.e., Fusion or Mixing)$ Andrew Strzelecki, Hongwu Xu

Next steps: 2023 LANSCE Experiments

- LANSCE 2023 beam cycle: June December 2023
 - New PuCl₃ compositions for density by neutron radiography
 - Lower concentrations; additional binary, ternary compositions (containing UCl₃, MgCl₂); for MSR Campaign collaboration: 5%PuCl₃ in UCl₃-NaCl (thank you to Toni Karlsson @ INL and Hilary Fitzgerald @ TerraPower!)
 - Note: Under LDRD DR project, also planning pair distribution function experiments for local structure studies at LANSCE in 2023 beam cycle
 - Supported by/coordinated with:
 - XAFS studies at SSRL
 - Continued electroanalytical studies (electromotive force measurements, corrosion rate determination)

Disseminating LANL Molten Salt Results

TMS Conference March 2023:

- 1. Hannah Patenaude (UNLV graduate student, currently working at LANL finishing dissertation work): "Electrochemical Characterization of Molten Salt Fuel Systems with Boron-Doped Diamond"
- 2. Scott Parker: "Thermophysical Properties of Liquid Halides"
- 3. Sven Vogel: "Characterization of UCI₃ and NaCI-0.352mol% UCI₃ Salts using Neutron Scattering"
- 4. LANL co-authored a Univ of Utah talk by Jacob Yankey of Mike Simpson's lab: "Chlorination of U Metal with FeCl₂ in LiCl-KCl and NaCl-MgCl₂"

Upcoming:

Presentations: Actinide Separations - May 2023 ACS Conference - August 2023 AIChE Conference - November 2023 Papers: Enthalpies of mixing by drop calorimetry (submitted February 2023) Pu-NaCI density by neutron radiography (to be submitted Summer 2023)

Karla Erickson (Early Career Scientist) New Capabilities to Access and Analyze Pure Inorganic Chlorides

Hannah Patenaude (Graduate Student) Electrochemical Investigation of Uranium Redox Behavior in Molten Chloride Salts Using Boron-Doped Diamond

Looking Forward: LANL Molten Salt Research 2023+

•

٠

Properties	Experimental Techniques
Density	Neutron Radiography, Conventional (Push- rod) Dilatometry
Viscosity	Dynamic Neutron and X-ray Radiography
Melting Point/Phase Diagram, Heat Capacity	Differential Scanning Calorimetry (DSC)
Corrosivity	Electrochemistry, Exposure Tests
Heat of Dissolution, Enthalpy of Mixing, Heat Capacity	Drop Calorimetry
Thermal Diffusivity	Laser Flash Analysis (LFA)
Local Structure	Pair Distribution Function (PDF) Analysis, EXAFS, Raman Spectroscopy, Drop Calorimetry, Electrochemistry

Internal Collaborations:

• **New-start LDRD projects**

Nuclear magnetic resonance spectroscopy (actinide chlorides)

LANL-led SciDAC

- Scientific Discovery through Advanced Computing program to advance modeling behavior and properties of structural materials under molten salt conditions
- Nuclear Energy Advanced Modeling ٠ and Simulation (NEAMS) - NTD Chris Stanek
- NA-22, Nonproliferation Stewardship Program
 - LANL-led EFRC: FUTURE
 - ٠ Studying corrosion under irradiation
 - **Space Nuclear Propulsion**
 - Electrodeposition of fuel coatings ٠ in molten salt

LANL-University Collaborations:

- **University of Utah** (Simpson)
 - Electrochemistry, vapor ٠ pressure, student pipeline
- MIT (Khaykovich) •

٠

- Pair distribution function analysis
- UC Berkeley (Scarlat, Fratoni)
 - Molten salt round robin, fluoride & beryllium salt expertise, student pipeline, IRP
- **Oregon State University, Texas** A&M, UNLV
 - Student pipeline—viscosity, • materials corrosion, electrochemistry

Acknowledgments

Actinide-molten salt team working on DSC, Density by Neutron Radiography, Drop Calorimetry:

Scott Parker (MST-16) Alex Long (MST-8) Matt Jackson (MST-DO) Travis Carver (MST-8) Alberto Gomez (MST-16) Andrew Strzelecki (EES-16) Hongwu Xu (EES-16)

Funding supporting DSC, Density by Neutron Radiography, Drop Calorimetry:

Molten Salt Reactor Campaign

LANL Laboratory Directed Research and Development (LDRD) Directed Research Project #20210113DR

Gateway for Accelerated Innovation in Nuclear (GAIN) #NE-21-25117

This work was performed, in part, at the Los Alamos Neutron Science Center (**LANSCE**), a NNSA User Facility operated for the U.S. Department of Energy (DOE) by Los Alamos National Laboratory (Contract 89233218CNA000001).

Thank you

Marisa Monreal mmonreal@lanl.gov

U.S. DEPARTMENT OF