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Motivation
Development of acoustic monitoring techniques that can be coupled 
with embedded fiber-optic sensors for in-situ structural monitoring of 
inaccessible microreactor components

FY24 Goals
Integrate acoustic processing methods, analytical techniques, and new 
experimental data for defect location information and other metrics
• Evaluate methods of machine learning, FEA modeling, and analysis 

using prior demonstration data for defect location information and 
other metrics

• Integrate with ORNL optical sensing development to incorporate 
technology capabilities & limitations into our modeling and 
experimental designs
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Experiment Methods Outcomes

Can we leverage resonance from ambient 
vibrations to monitor for structural changes? 

Remillieux, Ulrich 
et al. (2015) 



Demonstration test matrix and 
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Damage identification and 
localization

Basic damage identification demonstrated in 
FY23
Graph neural network (GNN) currently being 
tested against convolutional neural network
• Target outputs: Component state of health 

and damage location from existing vibrational 
dataset

• Current priority: develop optimization scheme to 
identify a reduced set of stations without 
sacrificing prediction power
− To mimic current & expected limitations of ORNL 

embedded sensing technology
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Convolutional NN predictions of damage state: 
 100% correct identification of presence of joint
 94% correct prediction of joint roughness



Predictions of combined stress & damage states: 
 75% accurate for rough cut, 60% for smooth cut
 Improved accuracy at higher stress levels



Graph neural networks

• Nodes & edges connect features of importance, 
similar to physical experiment design

• Expected behavior: the most important edges & 
subgraphs will correlate with damage location

Battaglia et al. (2018, October 17). Relational inductive biases, deep 
learning, and graph networks. arXiv. Retrieved from 
http://arxiv.org/abs/1806.01261

V = Station Information (time 
series recorded at each 
station)
E = Interstation Relationships 
(cross-correlations)
u = Universal Properties 
(strain, damage state, etc.)

http://arxiv.org/abs/1806.01261


Predicting optimal sensor 
placement

Beardslee, Shokouhi, Ulrich (2024). NDT & 
E Intl.

• Prior to measurement: predict optimal 
sensor placement using principal 
component analysis (PCA) on mode 
shapes

• Regenerate analysis for any 
combination of physical components
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Takeaways of capstone project
• Mentorship provided for Masters-level data 

science capstone project at Texas A&M
• Neural network trained and tested on a subset 

of 2TB vibrational dataset from FY23 (1 input 
amplitude chosen out of 10)

• Prediction performance:
− 81.2% accuracy for component of motion

(2.4x better than random guess)
− 51.2% accuracy for stress state

(2.6x better than random guess)
• PCA provided best dimensionality reduction
• Suggested next steps: increase diversity of damage & stress states in 

training dataset
• Project has prompted interest from other data science students at A&M, 

plans for A&M to host data in open access repository
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Next steps: experimental

• Collect new dataset on intact/damaged sample with an emphasis on 
activation of nonlinear elastic behavior for damage detection
− Unify data acquisition settings to improve ML processing
− Utilize infrared vibrometry for improved sensitivity to mode 

shapes during excitation
• Refine data acquisition processes for implementation in reactor test 

bed



Questions for potential 
implementation at MARVEL

• What are the expected vibration sources? 
− Frequency bandwidth, amplitude, propagation distance

• Are there opportunities to make exploratory measurements with a 
laser vibrometer or will any measurements require embedded 
transducers or fiber optic?
− Which high-concern components/systems/materials can be 

monitored in-situ?
− Core block, heat pipe, interfaces, other non-rad components?



Recent MRP-supported papers & 
presentationsBeardslee, L., Shokouhi, P, and Ulrich, T.J. (2023). Optimal measurement point selection for 
resonant ultrasound spectroscopy of complex-shaped specimens using principal component analysis. 
Nondestructive Testing & Evaluation International.

Conference Presentations
Geimer, P.R., Ulrich, T.J., Moore, J.R. (2023, June 5–9 ). Modeling quantification of nonlinear 
resonant ultrasound spectroscopy [Conference presentation]. 25th International Conference on 
Nonlinear Elasticity in Materials, Ghent, Belgium.
(invited) Geimer, P.R., Beardslee, L., Ulrich, T.J. (2023, December 4-8). Nonlinear resonant 
ultrasound spectroscopy using white-noise excitation. 
[Conference presentation]. Acoustics 2023, Sydney, Australia.

Completed: Develop plan for integration with ORNL embedded sensing 
advancements (M4 carryover from FY23)
In-progress and on track: 
1. Evaluate methods of machine learning, FE modeling, and analysis using prior 

demonstration data for defect localization and other metrics (M4, due Mar 2024) 
2. Integrate selected processing methods, analytical techniques, and new acoustic 

data for defect localization and other metrics (M3, due Sep 2024) 

FY24 milestone status




