NEUP Program

Experiments for Modeling and Validation of Liquid-Metal Heat Pipe Simulation Tools for Micro-Reactors

March 04, 2022

Yassin. A. Hassan | Texas A&M University

Joseph Seo | Texas A&M University

Daeguen Kim | Texas A&M University

Hansol Kim | Texas A&M University

Rodolfo Vaghetto | Texas A&M University

Overview of the Project

- The heat pipe is a device of very high conductance •
- It works passively on the principle of evaporation and • condensation of a working fluid so that it can transfer large amount of heat.
- Intensive studies to apply the heat pipe as a primary • heat transfer system of the micro-reactor have been pursued.

Single heat pipe test in MAGNET experimental station in IN

Spacecraft

From: Heat pipe - Wikipedia and wall.alphacoders.com

Wang et al., Thermalhydraulic analysis of a new conceptual heat pipe cooled small nuclear reactor system (2018)

Microreactor

Program

Design of e-Vinci from

Westinghouse

Overview of the Project

Purpose: The proposed work aims to produce high-fidelity liquidmetal heat-pipe experimental data for the validation of the simulation tool, Sockeye, through both single heat-pipe and integrated heatpipe experiments.

Objectives:

- Single Heat-Pipe Hydraulic Experiment
 Measurements of the hydraulic resistance for validation /
 development of wall friction, wick friction/form loss models.
- Single Liquid-Metal Heat-Pipe Experiment
 Measurements of internal temperature, pressure, and phase
 distribution for validation/development of heat transfer and flow
 models in Sockeye.
- Multiple Liquid-Metal Heat-Pipes Experiment in Hexagonal Arrangement

Investigate the integrated system performance under various operational scenarios such as partial failure of constituent heat pipes and non-uniform cooling/heating.

Sodium heat pipe with targeted design

Experiments at TAMU

Wick Characteristics Experiment

- Gap Effect Experiment
- Capillary Rising Modeling
- Heat Pipe Fabrication and Experiment
- Heat Pipe Measurement
- Heat Pipe Visualization

Introduction

- Pore radius, or pore size, is an average size of voids inside the porous media. This parameter should be small to acquire a large capillary pressure difference between the evaporator and condenser region.
- For a heat pipe, the permeability is a parameter of the wick resistance to the liquid flow along the pipe axial direction. Large permeability is needed for achieving a small liquid pressure drop along the wick structure.
- Having a low pore radius and a high permeability is hard to achieve in most homogeneous wick designs (Optimization/Tradeoff problem).
- The composite wick structures provide high capillary pressure by having small pores, while gaining high permeability from large size pores.
- The other way to overcome the tradeoff problem is to introduce an extra flow path for liquids other than wick structures.

Operating Limitation of the Interest

Capillary limitation

During heat pipe operation, the working fluid evaporates in the evaporator and condenses in the condenser, transporting the latent heat from one end of the heat pipe to the other. The liquid condensate is passively returned to the evaporator by capillary forces in the wick.

The maximum power that the heat pipe can transport and still return the condensate by capillary forces is the capillary limit.

 $\Delta P_c > \Delta P_g + \Delta P_v + \Delta P_l$

 ΔP_c : Capillary force generated in the wick

 ΔP_g : Pressure drop due to gravitation and acceleration

- ΔP_l : Liquid pressure drop in the wick
- ΔP_{v} : Fractional pressure drop in the vapor

Operating Limitation of the Interest

Capillary limitation

 ΔP_c : Capillary force generated in the wick

$$\Delta P_{C} = \frac{2\sigma}{r_{eff}}$$

 ΔP_g : Pressure drop due to gravitational acceleration

$$\Delta P_{g} = \left(\rho_{l} - \rho_{v}\right)gh$$

 $\Delta P_l: \text{ Liquid pressure drop in the wick (Darcy's law)}$ $\Delta P_l = \frac{\dot{m}\mu L}{\rho_l K A_{wick}} = \frac{q}{h_{lv}} \frac{\mu L}{\rho_l K A_{wick}}$ $K: \text{ Permeability} \qquad A_{wick}: \text{ Wick c}$

 A_{wick} : Wick cross-sectional area

 ΔP_{v} : Fractional pressure drop in the vapor

$$\Delta P_{v} = \frac{f \rho_{v} u_{v}^{2} L}{D_{v}}$$

f: Fanning friction factor

$$\Delta P_{C} > \left(\rho_{l} - \rho_{v}\right)gh + \frac{q}{h_{lv}}\frac{\mu L}{\rho_{l}KA_{wick}} + \frac{f\rho_{v}u_{v}L}{D_{v}}$$
$$q_{C} < \frac{h_{lv}\rho_{l}KA_{wick}}{\mu L} \left[\left(\rho_{l} - \rho_{v}\right)gh + \frac{f\rho_{v}u_{v}L}{D_{v}} - \Delta P_{C} \right]$$

Wick characteristics – Single Layer

Metal screen mesh wicks

Wick type	Wire diameter, d [mm]	Opening size, W [mm]	Opening area	r _{eff} [mm] (W+d)/2	Mesh number, N=1/(W+d)	Porosity φ [-]	Permeability K[m²]
60 x 60	0.1905	0.1397	12%	0.1651	3.028468	0.524	1.89E-10
100 x 100	0.1143	0.1524	30%	0.13335	3.749531	0.647	2.32E-10
200 x 200	0.04064	0.08636	46%	0.0635	7.874016	0.736	7.76E-11
200 x 200	0.05334	0.07366	34%	0.0635	7.874016	0.654	5.44E-11
400 x 400	0.0254	0.0381	38%	0.03175	15.74803	0.670	1.46E-11
500 x 500	0.02032	0.03048	36%	0.0254	19.68504	0.670	9.38E-12

The wick combining coarse and fine wick have superior performance since heat pipe performance requires high capillary pressure, and yet still offer low resistance to fluid flow*

Case	Туре	Pore radius, d (um)	Porosity, ε	Permeability, K (m2)	Capillary Pressure (Pa)	Maximum Heat input (W)
1	100-mesh (6 wraps)	r — — —				
2	400-mesh (6 wraps)					
3	60-mesh (6 wraps)					
4	100-mesh (2 wraps), 400-mesh (2 wraps), 60-mesh (2 wraps)					ted from
5	100-mesh (1 wraps), 400-mesh (3 wraps), 60-mesh (2 wraps)	Mea:	sured	by EXP.	l theor	etical
6	100-mesh (2 wraps), 400-mesh (3 wraps), 60-mesh (1 wraps)				l mo	dels
7	100-mesh (2 wraps), 400-mesh (1 wraps), 60-mesh (3 wraps)					
8	100-mesh (3 wraps), 400-mesh (2 wraps), 60-mesh (1 wraps)					
9	100-mesh (3 wraps), 400-mesh (1 wraps), 60-mesh (2 wraps)			J		

Porosity Measurement

Microreactor Program

Experiments at TAMU

Wick Characteristics Experiment

Gap Effect Experiment

- Capillary Rising Modeling
- Heat Pipe Fabrication and Experiment
- Heat Pipe Measurement
- Heat Pipe Visualization

Wall Effect Investigation

Wall Effect Experimental Setup

Wick type #5 6-layered composite screen mesh

A Simple setup was prepared to measure permeabilities of a wick structure with different sizes of gap (0.0 mm ~ 30.0 mm) between stainless steel wall and the screen mesh.

The same method with previous study was utilized.

Shim structures with varying thickness to control the size of the gap

Gap Effect Experiment

Wick assembly with adjustable gap between the wall

Wick samples were

permeabilities and

effective pore radius

gap (0.0 mm ~ 20.0

stainless steel wall

mm) between

Optimal distance of the gap for the annular type heat pipe was found

The result of the measurement is plotted vs. the gap distance.

An interesting trend can be found from the result. The K/R_{eff} increases as the gap increase, a peak at 0.7 to 1.2 mm is observed. As the gap continues to increase, the permeability falls the bare mesh case.

Experiments at TAMU

- Wick Characteristics Experiment
- Gap Effect Experiment
- Capillary Rising Modeling
- Heat Pipe Fabrication and Experiment
- Heat Pipe Measurement
- Heat Pipe Visualization

Capillary Rising Modeling

Mesh-mesh graph is smaller than glass-mesh. According to the formula, height is $h = \frac{\sigma (cos\theta_0 + cos\theta_1)}{\rho g(w)}$ (where θ_0 = glass contact angle and θ_1 = mesh contact angle), Therefore,

 $\cos\theta_1 < \cos\theta_0$, $\theta_0 < \theta_1$

Glass contact angle with ethanol θ_0 is about 30°($\pi/6$), then Mesh contact angle with ethanol would be larger than 30°

Contact Angle Measurement

36° 10 50

Glass – Ethanol contact angle

Stainless steel mesh – Ethanol contact angle

Curvature Effect

Support

glass

Experiments at TAMU

- Wick Characteristics Experiment
- Gap Effect Experiment
- Capillary Rising Modeling

Heat Pipe Fabrication and Experiment

- Heat Pipe Measurement
- Heat Pipe Visualization

Heat Pipe Experimental Facility

Evaporator

Adiabatic Region

Condenser

External T.C.
 Internal T.C.
 Pressure port

Shakedown Test

Heat Pipe Fabrication and Experiment

$$Q_{capillary.gap} = G \cdot Q_{capillary} = G \frac{2\sigma}{r_{eff}} \frac{KA_{wick}h_{lv}\rho_l}{\mu_l L_{eff}}$$

Gap Distance [mm]	G [-]
0	1.00
0.2	1.42
0.7	1.48
1.2	1.54
1.7	1.24
2.2	1.11
2.7	1.05

The operating limitation of the heat pipe matches well with the prediction from the result of the wick characterization and gap effect experiment.

Experiments at TAMU

- Wick Characteristics Experiment
- Gap Effect Experiment
- Capillary Rising Modeling
- Heat Pipe Fabrication and Experiment
- Heat Pipe Measurement
- Heat Pipe Visualization

Temperature Measurement System

Experiments at TAMU

- Wick Characteristics Experiment
- Gap Effect Experiment
- Capillary Rising Modeling
- Heat Pipe Fabrication and Experiment
- Heat Pipe Measurement
- Heat Pipe Visualization

Flow Visualization of Liquid Metal

TAMU has a capability of transparent heating up to 700 $^{\circ}\mathrm{C}$ and ~101 kW/m² of heat flux.

Water boiling experiment using transparent heater.

TAMU is being conducted to perform melting/boiling experiment using the transparent heater.

The experiment will allow to obtain information about flow behavior of liquid metal at different operating status of the heat pipe.

Heat Pipe Visualization Experimental Setup

- Visualization using high speed camera and IR camera is conducted.
- Temperature measurement using fiber optical sensor and IR camera is implemented.
- Confocal Chromatic Sensor (CCS) is applied to measure the liquid film behavior.
- 4 gas cylinders were added to adjust inclination angle.

CCS Measurement & High-Speed Images

Boiling Pattern Inside Heat Pipe – Half Wick Exp

Heat Pipe Visualization with Inclination Angle

- Visualization of the heat pipe with different inclination angle.
- Temperature measurement using fiber optical sensor and IR camera is implemented.
- Two high-speed camera was set (bottom side and top side)

Heat Pipe Visualization Results

Heat Pipe Visualization Results - Limitation

200W, 0-degree inclination, rapid start-up

In Progress – Moving on to the Liquid Metal

The contact angle measurement of the liquid sodium with different material (stainless steel plate and meshes) is being conducted in TAMU.

> Microreactor Program

