

Molten Salt Reactor P R O G R A M

Molten Salt Reactor Radioisotopes Separation by Isotachophoresis

Shirmir Branch, Marsobyn Salalila, Nicole Rocco, Tyler Schlieder, Danny Bottenus, Cornelius Ivory (WSU), Hannah Hallikainen (WSU) Pacific Northwest National Laboratory and Washington State University

Annual MSR Campaign Review Meeting 2-4 May 2023

Overview

- Introduction
- Experimental
 - Cl isotopic analysis by QQQ-ICPMS
 - Electrophoresis experiment in bench-scale electrophoretic equipment
- Numerical simulations using COMSOL Multiphysics
- Experimental results
- Recycle continuous flow electrophoresis design
- Conclusions

Introduction

Design for molten salt reactors

- Rely on fluoride or chloride based salts to act as coolants or fuel carriers
- Chloride salts have attractive features
 - Actinide trichlorides forms lower melting point solutions and have higher solubility for actinides so they can contain significant amounts of transuranic elements
 - ³⁵Cl has a strong (n, proton) threshold reaction that will poison the reactor and also gives rise to ³⁶Cl as an activation product, which is a long-lived, energetic beta source that complicates waste disposal
- Currently no domestic capability to enrich ³⁷Cl from the more abundant ³⁵Cl

Electrophoresis

- Enrichment and separation of ³⁷Cl from ³⁵Cl at nanogram scales by capillary electrophoresis (CE) has been demonstrated in the technical literature
- Electrophoretic mobility difference is 0.29%
 - ${}^{35}CI \text{ mobility} = 79.18 \cdot 10^{-9} \text{ m}^2/(\text{V} \cdot \text{s})$
 - ³⁷Cl mobility = 78.95·10⁻⁹ m²/(V·s)
- Elemental chloride has been separated by isotachophoresis (ITP)
- Propose stationary ITP and Moving Bed Electrophoresis (MBE) for enrichment

Lucy, C., McDonald, T. Anal. Chem. 1995, 67, 6, 1074–1078

Capillary Zone Electrophoresis (CZE) Isocratic running buffer 1 2 3

Isotachophoresis

- Separation and pre-concentration of charged analytes in an electric field
- Sample (S) is introduced between a fast leading electrolyte (LE) and a slow terminating electrolyte (TE)
- Apply electric field and ions will migrate according to their m_i
 - $m_{\text{LE}} > m_{\text{S}} > m_{\text{TE}}$
- Advantages
 - Concentration by several orders of magnitude
 - Simple, fast, and compatible with other analytical techniques
 - Simultaneous concentration/fractionation
 - Immune to racetrack dispersion
 - ITP self-sharpening effect
 - "Greener" technology
 - Chemical reagents needed are less hazardous than alternative approaches
 - Potential to out-perform liquid:liquid extraction approaches

Stationary Isotachophoresis

- Balance electric field with "upflow" counter flow
- Allows time for difficult separations
- May take up to days to get complete separation under ideal conditions
 - pH excursion issues, i.e. hydrogen buildup at cathode
- New capability to PNNL

Experimental

- Validate ³⁷Cl enrichment by isotachophoresis by QQQ-ICPMS
- Typically measured by TIMS, IRMS, or AMS
 - Extensive sample preparation and analytical time
- ICPMS fast, accurate, and requires minimal sample processing

ICP-MS lab, Physical Sciences Facility, PNNL

Challenges/approach

- Challenge: polyatomic interferences
 - Interference on ${}^{35}CI = {}^{1}H^{16}O^{18}O$
 - Interference on ${}^{37}CI = {}^{36}Ar^{1}H$ and ${}^{18}O^{18}O^{1}H$
- Solution: reaction gas in collisionreaction cell (CRC)
 - Shifts target analyte (CI) to higher mass to avoid poly atomic interferences
- Instrumentation
 - QQQ-ICPMS
 - Agilent 8900 (pictured right)

Agilent 8900 QQQ-ICPMS

Methodology

Tandem MS/MS

- Two quad mass specs
- Collision reaction cell (CRC) between
- CI analysis using O₂
- Measure shifted product ions at m/z = 51 and 53 amu
 - ³⁵Cl ->³⁵Cl¹⁶O ; *m*/*z* = 51
 - ³⁷Cl ->³⁷Cl¹⁶O ; *m/z* = 53

• Measure 53/51 ratio is equivalent to ³⁷Cl/³⁵Cl

Results – natural ³⁷Cl/³⁵Cl

Results – enriched ³⁷Cl/³⁵Cl in HCl

- Enriched ³⁷Cl/³⁵Cl cal curve
 - Use enriched ³⁷Cl spike
 - ³⁷Cl/³⁵Cl = 0.3197 (natural) -1.8791

Results – enriched ³⁷Cl/³⁵Cl in buffer

- ³⁷Cl/³⁵Cl cal curve in buffer
 - ${}^{37}CI/{}^{35}CI = 0.3197-0.7496$
- Compare unknowns to calibration curve to determine ³⁷Cl/³⁵Cl ratio

State of the Art Electrophoresis System

- Separation medium is in the annulus
- Complimentary tines and spinning rotor
 → No electroosmotic Flow
- Cooling oil is recirculated through the hollowed-out rotor that effectively remove Joule Heat
- Equipment can be modified to run in continuous operation
- Sample ports along the length of the chamber allow for easy sample collection
- Efficient removal of electrolysis products

For ITP to work need a faster ion than CI act as LE

Challenges

- Initial literature review found thiosulfate and dithionate as strong candidate for LE in ITP separations
- Neither ion was available and required a custom synthesis that made the cost and time to synthesis prohibitive
- Other options Br, I, and CN were safety concerns
- Resulted in a pivoting of strategy
 - WSU is currently attempting ITP at high pH using hydroxide as the LE
 - PNNL has transitioned to moving bed electrophoresis (MBE)

Will it Work – COMSOL Multiphysics Simulations

Simulations performed by WSU

• System 1:

- ITP at pH 13 using a OH as LE and TAPS as TE
- Sodium at counterion
- Sample is NaCl
- Over the course of 24 hours you do see some enrichment
- This simulation does include dispersion that is inherent to current electrophoresis system

Moving Bed Electrophoresis

- Similar to ITP •
 - Instead of LE you use sample as leading zone and slower ion, in this case, ³⁷Cl will be enriched at TE interface
- System 2:
 - LE 10mM HCl titrated to pH 8.8 with Tris
 - TE 60 mM EACA titrated to pH 9.5 with EACA
- Over the course of 24 hours you do see some enrichment
- This simulation does include • dispersion that is inherent to current electrophoresis system

Moving Bed Electrophoresis

- System 3:
 - LE 10mM HCl titrated to pH 10.5 with Tris
 - TE 10mM EACA titrated to pH 11 with Tris
- Over the course of 24 hours simulations show good enrichment
- This simulation does include dispersion that is inherent to current electrophoresis system

Concentrations, All Species 10 pН — · pH_OH 9 CI35 8 Cl37 OH 7 6 5 4 3 2 1 0 0.05 0.1 0.15 0.2 0.25 0

x-coordinate (m)

Experimental Results

- MBE System 2:
 - LE 10mM HCl titrated to pH 8.8 with Tris
 - TE 60 mM EACA titrated to pH 9.5 with EACA
 - Sample 0.4 mM Orange G used as a visual indicator to balance "upflow" counter flow with electric field
- 5-hr video compressed into ~ 1 min

Current/Voltage Profile

- Voltage applied = 3.5 kV
- Bubble formation could cause • dispersion of analytes, inhibiting separation
 - Changing current due to buffer resistance changing over time
- Samples collected after 24 hours for quantitative determination of Cl⁻ ratio

Analytical Results from QQQ-ICPMS

- This is about what we expected in terms of enrichment based on previous results
 - Dispersion is the primary source of low enrichment levels
- Unexpected samples close to the visible dye did not contain sufficient amount of chlorine to get an accurate measurement
 - Unknown best guess currently is another anion contamination forming a zone between CI-37 and visible dye
- Single stage separation factor (α):

 $\propto = \frac{Cl37_{product} \cdot (1 - Cl37_{tails})}{Cl37_{tails} \cdot (1 - Cl37_{product})} = 1.81$

Expected

б

have

C

24 hr

20

Things to Keep in Mind

- Each decade increase in pH increases throughput by 10x
- ITP/MBE are expected to fail at pH>13
- Operation at higher pH will require better cooling due to the generation of Joule heat
- Reduction of machine dispersion by 4x will dramatically increase enrichment as illustrated by the recycling continuous flow electrophoresis (RCFE) system
- It would be difficult to reduce dispersion in the existing electrophoresis unit but relatively easy to do this in the Flat-Bed RCFE by using surface coatings and adjusting the counterflow

RCFE Design and Simulation w/ Reduced Dispersion

Conclusions

- Developed a capability for PNNL to quantify isotopic ratio of chlorine
- Demonstrated enrichment in state of the art bench scale electrophoresis equipment despite higher than desirable dispersion
 - Single stage separation factors of 1.8 achieved
- Multitude of "working" COMSOL simulations to aid in development of new electrophoresis equipment design, i.e. RCFE

Thank you

danny.bottenus@pnnl.gov shirmir.branch@pnnl.gov Nicole.rocco@pnnl.gov tyler.schlieder@pnnl.gov cfivory@wsu.edu

U.S. DEPARTMENT OF

Office of **NUCLEAR ENERGY**

Electrophoresis

25

RCFE

COMSOL Multiphysics[®] simulation of the evolution of a separation of two species with 0.25% difference in their electrophoretic mobilities in a 12-inch wide recycle CFE. Feed is continuously injected into the bottom center port and products are taken out of the chamber at the left and right offtake ports. Recycling allows the hold-up time to be increased until the two species are separated.

