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Background
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Microreactor Application Research, Validation and EvaLuation

• Rapid prototype Gen. IV microreactor, < 100 kWth
• No pressurizer, but still high temperature coolant

• MARVEL > 530 °C
• LWR ~ 315 °C

• Liquid metal (NaK-78) cooled
• Produce combined heat and power (CHP)
• Integrate with intermittent power sources (solar and wind) in 

world’s first functional nuclear-coupled microgrid
• Undertake the risk of “being the first”
• Share lessons learned with commercial developers
• Rapidly achieve:

• Design
• Authorization
• Construction (at INL)
• Testing
• Operatation



MARVEL Fuel Element Design
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U-ZrHx contains both the fuel (uranium) and neutron moderator 
(hydrogen) in one, reducing the size requirement of the reactor 

core to achieve the desired neutron energy spectrum



U-ZrH1.6 Fuel Already Used in TRIGA Reactors

• TRIGA reactors have been licensed by 
US NRC since the 1950s

• TRIGA reactors use U-ZrH1.60 fuel
• U-ZrH1.60 fuel has been used previously 

in NASA space reactors (SNAP Program)
• MARVEL fuel will be fabricated and 

purchased from TRIGA International
−Same materials, same fabrication 

processes, etc.
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[1] History, Development and Future of TRIGA Research Reactors, International 
Atomic Energy Agency, Vienna, 2016. 
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MARVEL Fuel Element Properties



Adapted from D. Sunderland, Anatech –  Nuclear Science and Technology Interaction Program (NSTIP), ORNL, July 8, 2011, reproduced from Lassman
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Fuel Element Material Evolution is Complex

• Multiphysics
 Thermo-mechanics
 Mass transport
 Chemistry
 Neutronics
 Thermal-hydraulics

• Multi-length scale 
 Important physics operate 
at level of microstructure
 Need real predictions at 

engineering scale
• Multi-temporal scale 
 Long, steady operation
 Short power ramps
 Rapid transients



MARVEL Fuel Meat Microstructure
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• Microstructure of U-
ZrH1.6 confirmed

• 30 wt% U
• ~11 vol% U

• Uranium micro-
inclusions 
embedded in ZrH1.6 
matrix

• ZrH1.6 is δ-phase 
(FCC)

[1] J.A. Evans et.al., Uranium-Zirconium Hydride Nuclear Fuel Performance in 
the NaK-Cooled MARVEL Microreactor, J Nucl Mater. In Production.



U-ZrHx Thermophysical Properties
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x

• Matrix remains δ-phase up to 
> 1000 °C

• FCC
• Geometry is stable and 

predictable
• Cladding (and fuel) are 

compatible with NaK
• Design limits are based on 

cladding rupture due to 
internal gas 
overpressurization (and FCMI, 
if present)

[1] D. Olander, E. Greenspan, H.D. Garkisch, B. Petrovic, Uranium-zirconium 
hydride fuel properties, Nucl Eng Des 239(8) (2009) 1406-1424. 



Fuel Element Internal Gas Gap/Plenum Pressure

• Air

• Fission gas
− Produced
− Released

• Hydrogen Dissociation…
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[1] M. Tonks, D. Andersson, R. Devanathan, R. Dubourg, A. El-Azab, M. Freyss, F. Iglesias, K. 
Kulacsy, G. Pastore, S.R. Phillpot, M. Welland, Unit mechanisms of fission gas release: Current 
understanding and future needs, J Nucl Mater 504 (2018) 300-317.
[2] M.T. Simnad, F.C. Foushee, G.B. West, Fuel Elements for Pulsed TRIGA Research Reactors, Nucl 
Technol 28(1) (1976) 31-56.  



Summary of  Hydrogen Evolution Mechanisms

U-ZrHx 
Fuel Meat

H H

1. Hydrogen diffusion and redistribution
2. Hydrogen dissociation (out of the fuel meat, into the gas gap)
3. Hydrogen leakage (through the cladding, into the coolant)
4. H/Zr evolution due to fission fragment oxidation reactions
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Hydrogen Dissociation Equilibria
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Increasing H/Zr RatioFor MARVEL,

H/Zrnom = 1.60

But the hydrogen 
dissociation pressure 
is dependent upon 
the temperature and 
H/Zr ratio at the fuel 
meat surface…



Radial Hydrogen Redistribution in Annular Fuel – Steady State 
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Hydrogen Redistribution in MARVEL Fuel Meat

• For fresh fuel, nominal H/Zr = 1.60
− Flat green dash-dot

• Hydrogen redistribution reaches 
steady state in about a month
− Blue dotted line

• By EOL, hydrogen loss mechanisms 
have had time to manifest
− After reaching steady state, the 

H/Zr distribution has the same 
general shape as before, but xavg 
has decreased

− Red dashed line
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Severe Accident and Scoping Analyses



Bounding Conditions – The Hypothetical Accident Scenario
• Two severe accident scenarios to consider are:

1. Loss of Flow Accident (LOFA)
• Something prevents the coolant from properly carrying heat away from the core

− Probability of occurrence < 10-6 yr-1 (per ECAR 6332)

2. Loss of Coolant Accident (LOCA)
• Coolant pressure drops

− (Although MARVEL doesn’t use a pressurizer system like in an LWR, restricted 
thermal expansion of the coolant still results in ~3 atm of NaK pressure during 
normal conditions)

− Probability of occurrence < 10-6 yr-1 (per ECAR 6332)

• The following analysis considers both accidents occurring simultaneously (probability of 
occurrence < 10-12 yr-1) and without human intervention

• Peak values chosen for conservatism (ex. peak temperature, burnup, corrosion rate, etc.)
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Fuel Performance During the Severe Accident
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BISON fuel performance simulation of hoop 
stress during accident is in excellent agreement 

with analytical calculations

Peak Fuel Meat Temp ≈ 730 °C



MARVEL Scoping Analysis: Fuel Safety Margin

• Peak fuel meat temp of 730 °C during the postulated 
“LOFA + LOCA” accident scenario

• The primary failure mechanism for MARVEL fuel is 
internal gas overpressurization (same as TRIGA)

• This is a function of fuel meat temp driven by 
hydrogen dissociation (same as TRIGA)

• Under the most conservative assumptions:
o A peak fuel meat temp of 916 °C precludes fuel 

element damage
o A peak fuel meat temp of 950 °C precludes fuel 

element rupture
• Rounding down for conservatism, we set the fuel 

element limit as a peak fuel meat temp of 900 °C
• We have a peak fuel meat temp margin of ~ 170 °C 

before challenging the integrity of the fuel element
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Conclusions

• No further qualification efforts are necessary for authorization per US 
NRC guidance (NUREG-1537)

• MARVEL reactor fuel performance is bounded by already-existing fuel 
licenses (ex. TRIGA reactor fuel)
−Maintains structural integrity, geometric stability, and behavior is stable 

and predictable under bounding accident conditions
−Bounding accident conditions (burnup, radiation damage, 

temperatures, pressures, etc.) are well below the functional limits of the 
fuel element

−We find that a peak fuel temp of 900 °C precludes cladding damage
−Safety margins are huge (~ 170 °C)
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