The Impact of the Regulatory Process on Overall Project Risk

Chris Nolan

Duke Energy Vice President of Regulatory Affairs, Policy and Emergency Preparedness

Duke Energy Service Territory

- **Regulated Utility** operations serves 7.8 million retail electric customers in 6 states – NC, SC, FL, IN, OH, KY
 - 51,000 megawatts total electric generation capacity
 - 31,000 miles of transmission lines
 - 280,000 miles of distribution lines
 - Service area 91,000 square miles
- **Piedmont Natural Gas** serves more than 1.6 million natural gas customers in 5 states – NC, SC, OH, KY, TN
 - 33,000 miles of natural gas pipelines
- Duke Energy Renewables operates wind and solar power facilities in 14 states – AZ, CA, CO, FL, GA, HI, KS, NC, NY, OK, PA, TX, WI, WY
 - 3,000 megawatts electric generation capacity
- Approximately 29,000 employees

Duke Energy Nuclear Generation

Station	Capacity (MW)	Units	Commercial Operation	License Extension
Oconee	2,554	3 PWRs	1973	2033, 2034
McGuire	2,316	2 PWRs	1981	2041, 2043
Catawba*	2,310	2 PWRs	1985	2043
Brunswick	1,870	2 BWRs	1975	2034, 2036
Harris	964	1 PWR	1987	2046
Robinson	759	1 PWR	1971	2030
Total	10,773	11		

Duke Energy owns 100% of all units except the Catawba units.

Duke Energy Wind and Solar Generation

Commercial and Regulated Renewable Projects Solar power Wind power Battery storage Third-party Under projects projects facilities construction customers Michigan Brookfield Pine River Gratiot Soruce Rosiere Wind Shirley o Campbell Hill O Top of the World Block Island Laurel Hill 🔾 O Shoreham Silver Sage OO Happy Jack North Allegheny New Jersey Sunset Reservoir Kit Carson Beckjord I & II Victory Palmer Pumpjack ORio Bravo I & II Cimarron II O Ironwood North Carolina Wildwood | & || 🧭 North Rosamond O Frontier Frontier Marina Davi Malana Magika Magika Bagdad Seville I & II 🔘 Gato Montes O Caprock O Aio 🔾 Mesquite Creek Sweetwater Marvneal Notrees 🖷 *Denotes DERC, LLC. solar locations Walt Disney World Co Stantor Wing 🔾 Mester Los Vientos I & II Los Vientos III, IV & V

Duke Energy Renewables As of December 31, 2019

4

Climate Change

- President Biden's Clean Energy Plan
 - Rejoined the 2016 Paris Agreement on climate change

- Reform and extend certain tax incentives, like the production and investment tax credits for wind and solar projects
- Use of renewables to produce carbon-free Hydrogen power
- Significant investment in the research, development, and commercialization of Advanced Nuclear reactors
- Achieve an economy-wide net-zero carbon emissions standard by 2050, and a 2035 target date for a carbon pollution-free American utility sector
- To meet these carbon reduction goals, nuclear must be included in the generation mix
- With continued addition of wind and solar facilities, nuclear power must adapt as a zeroemitting load following resource (ZELFR)
- ZELFRs can include advanced nuclear, energy storage, hydrogen firing turbines, etc.

Duke Energy Clean Energy Goals

Companywide CO₂ Emissions Reduction Goals

Attain **net-zero** CO₂ emissions

Duke Energy's Path to a Low-Carbon Future

- Collaborate and align with our states and stakeholders as we transform
- Accelerate our transition to cleaner energy
- Continue to operate our existing carbon-free technologies, including nuclear and renewables
- Modernize our electric grid
- Advocate for sound public policy that advances technology and innovation
- Base load generation carbon free, load following

Moving Toward a Cleaner Generation Fleet and Increased Fuel Diversity at Duke Energy

2019

7

Project Risks

- Siting Risks
 - Environmental impact
 - Federal and state interactions and opposition
 - Potential intervenor litigation
- Technical Risks
 - First-of-a-kind (FOAK) reactor technology
 - Design certification delay, especially with using Part 52 pathway
 - Number of changes to a design after a combined operating license (COL) approved under Part 52
- Regulatory Risks
 - Lack of clarity in existing regulatory framework for advanced nuclear (e.g., licensing basis events, categorizing systems, structures and components or SSCs, radiological limits, etc.)
 - Number of exemption requests required and number of requests for additional information
 - Regulatory decision making Approved, Not approved or Delayed

Early Site Permits (ESPs)

- Approves the site for nuclear deployment for up to 20 years, with a renewal option for an additional 10 to 20 years
- Using a Plant Parameter Envelope (PPE), the ESP can bound multiple technologies
- Allows a utility to make progress while technologies continue to advance (i.e., detailed design)
- Can be used with either the Part 50 or Part 52 licensing pathway
- A Limited Work Authorization (LWA) can allow site preparation activities to start while the Operating License is under NRC review
- Includes an approved environmental impact statement
- Finality on site safety and environmental regulatory issues
 - Mitigates project risk
 - Preserves flexibility
 - Can allow an early start of field work

Part 50 Licensing Process

- Two-step process
 - Construction Permit (CP) followed by application for Operating License (OL)
- Advantages
 - Allows field work, design and licensing to all occur in parallel (i.e., earlier start)
 - Could result in a sooner completion date since construction proceeds at risk
 - Provides flexibility in completing design and construction
- Disadvantages
 - Larger risks on the part of the utility as construction starts before a detailed reactor design is complete
 - The "design-as-you-build" approach introduces project risks in the regulatory arena since the NRC may impose additional requirements as a condition of receiving an OL
 - Provides less finality before making a significant financial investment in plant construction
 - Requires duplicative licensing and hearing requirements

Part 52 Licensing Process

- One-step process
 - Combined Construction Permit and Operating License
- Advantages
 - Incorporates a standard design certification (i.e., approved reactor design)
 - Allows early resolution of safety and environmental issues before field work begins
 - Offers more finality in that regulatory reviews regarding suitability of site or design of the plant (i.e., design certification) are not revisited prior to issuance of the COL
- Disadvantages
 - Less construction flexibility
 - Potential schedule risk if significant changes to reactor design are needed later
 - Later start on construction typically results in a later overall completion date

Advanced Nuclear Licensing Implications

- Small Modular Reactors (Light Water) and Advanced Reactors (Non-Light Water) present unique licensing challenges
 - Advanced nuclear plants will be coming on line when renewable generation will make up a more significant part of the U.S. generation mix
 - Advanced nuclear must have the ability to load follow to supplement when renewable generation is unavailable or when it's peaking
 - Operators may utilize advanced nuclear plants to produce hydrogen or process steam for commercial or industrial use
 - Licensing for First-of-a Kind designs may result in increased technical and financial risks
 - The NRC has recognized the uniqueness of advanced nuclear plants and is developing a new riskinformed, technology inclusive regulatory framework. The new Rule (i.e., Part 53) formalizing key parts of this framework will not be issued in time for First-of-a-Kind plants

QUESTIONS?

BRANK NUMBER

Images courtesy of GAIN and ThirdWay

