# U.S. DEPARTMENT OF Office of NUCLEAR ENERGY

### Summary of Contributions to Gain Innovative Materials workshop at ANS (6/15/22)

Nuclear Materials Advisor

Pacific Northwest National Laboratory

Stuart Maloy Nuclear Materials Advisor Pacific Northwest National Laboratory

# Agenda

| РТ          | Торіс                                                                                        | Presenter                   |
|-------------|----------------------------------------------------------------------------------------------|-----------------------------|
| 1:00 p.m.   | Welcome, Introductions, Purpose, Agenda                                                      | Lori Braase, GAIN           |
| 1:15 p.m.   | DOE Tentative New Program Objectives                                                         | Stephen Kung, DOE           |
| 1:30 p.m.   | Innovative Cladding Materials for Advanced Reactors / Q&A                                    | Stuart Maloy, PNNL          |
| Advanced N  | Nuclear Industry Gaps and Needs (10 Minute Presentations)                                    | Lori Braase, GAIN           |
| 2:00 p.m.   | Aurora Reactor                                                                               | Ryan Webster, Oklo          |
| 2:15 p.m.   | Westinghouse Lead Fast Reactor                                                               | Emre Tatli, Westinghouse    |
| 2:30 p.m.   | Molten Chloride Fast Reactor (MCFR)                                                          | Matt Wargon, TerraPower     |
| 2:45 p.m.   | Discussion                                                                                   | Stuart Maloy, PNNL          |
| National La |                                                                                              |                             |
| 3:00 p.m.   | Summary of the "Capability Needs for Irradiated and<br>Radioactive Materials Research Study" | Simon Pimblott, INL/NSUF    |
| 3:20 p.m.   | Probing Nanoscale Damage Gradients in Irradiated Metals                                      | Siddhartha Pathak, Iowa Sta |
| 3:40 p.m.   | Properties of Advanced ODS Alloys and Routes for Application                                 | TS Byun, ORNL               |
| 4:00 p.m.   | High Dose Ion Irradiation Testing of Materials                                               | Kevin Field, U of Michigan  |
| 4:20 p.m.   | Gaps and Needs Discussion                                                                    |                             |
| 5:00 p.m.   | Identify Path Forward and Actions                                                            | Stuart Maloy, PNNL          |
| 5:30 p.m.   | Adjourn                                                                                      |                             |

### ate

of .EAR ENERGY

- High Level Needs
  - Irradiation testing facility in the US
  - Qualification of materials/alloys in short timeframes
  - Prioritization of immediate needs
  - A new materials program would need to address engineering scalability, engineering application and joining capabilities.

- Oklo- sodium cooled fast reactor-R. Webster Design Parameters
  - Electric capacity 1-15 Mwe
  - Thermal capacity 4-50 MWt
  - Temp of usable heat 500-550C
  - Capacity factor > 90%
  - Licensed operating life 20+years
  - Land Usage < 1 acre

Larger designs also in development



- Oklo- sodium cooled fast reactor-R. Webster cladding and core materials
  - Near term (1-5 years)
    - Core materials from existing alloys (e.g. F/M and Austenitic SS)
    - Challenged by limited supply chain capacity, capability and interest
  - Intermediate term (5-10 years)
    - Existing alloys with FCCI barriers
    - Incremental improvement in existing alloys
    - Commercial availability of new alloys (e.g. refractory-based metal alloys)
    - Challenged by lack of performance data and supply chain development
  - Long term (10 + years)
    - ODS alloys
    - New manufacturing methods
    - Advanced fuel forms
    - Challenged by lack of performance data and limited to no existing supply chain



- Westinghouse LFR E. Tatli Design parameters
  - Reactor power- 450 MWe heat
  - Efficiency ~47%
  - Primary/secondary coolant liquid lead/supercritical water
  - Ultimate heat sink atmosphere no water bodies needed
  - Load following yes through thermal energy storage system
  - Reference fuel cycle open (but capable to support closed cycle)
  - Fuel type oxide (phase 1); uranium nitride (phase 2)
  - Cycle length and refueling scheme 8-15 yrs; direct-to-cask refueling
  - Operating pressure- 0.1 MPa (primary)/~34 MPa (secondary)
  - Lead coolant min/max temperature 390C/530C (phase 1); 390C/650C (phase 2)



### Westinghouse - LFR

- Westinghouse LFR E. Tatli LFR Material Strategy
  - Phase 1 lower temperature
    - Use existing, qualified materials with corrosion-resistant coating/cladding (e.g. 316L, 15-15Ti)
  - Phase II higher temperature
    - Qualify new material(s) to allow for greater reliability at high temperatures
      - Alumina-forming austenitics (AFA)
      - FeCrAI ODS, SiC/SiC, tantalum

|                        | Phase | Max steady-<br>state T (°C) |
|------------------------|-------|-----------------------------|
| Guard                  |       | <100                        |
| Vessel                 | II    | <100                        |
| Reactor                | I.    | ~400                        |
| Vessel                 | II    | ~400                        |
| Reactor                | I.    | ~530                        |
| Internals              | II    | ~650                        |
| Heat                   | 1     | ~530                        |
| Exchanger              | II    | ~650                        |
| Fuel rod<br>cladding   | I.    | ~600                        |
|                        | Ш     | ~750                        |
| Fuel                   | 1     | ~530                        |
| assembly<br>structures | Ш     | ~650                        |
| DCD                    | I.    | ~400                        |
| RCP<br>impeller        | Ш     | ~400                        |

a - Indicates coated/clad with an alumina-forming material, such as FeCrAl



| Pb velocity<br>(m/s) | Candidate materials                     |
|----------------------|-----------------------------------------|
| N.A.                 | AISI 316 <sup>a</sup>                   |
| N.A.                 | AISI 316 <sup>a</sup>                   |
| <1                   | AISI 316 <sup>a</sup>                   |
| <1                   | AISI 316°, 15-15Ti°, AFA                |
| <1                   | AISI 316°,15-15Ti <sup>a</sup>          |
| <1                   | AISI 316ª,15-15Tiª, AFA                 |
| <1                   | AISI 316 <sup>a</sup>                   |
| <1                   | AISI 316ª, AFA                          |
| ≤2                   | 15-15Ti <sup>a</sup>                    |
| ≤2                   | 15-15Ti ª, AFA, FeCrAl<br>ODSª, SiC/SiC |
| ≤2                   | 15-15Ti <sup>a</sup>                    |
| ≤2                   | 15-15Ti ª, AFA, FeCrAl<br>ODSª, SiC/SiC |
| <10                  | AISI 316ª, Tantalum                     |
| <10                  | AISI 316ª, AFA,<br>Tantalum             |

Office of NUCLEAR ENERGY

- Terrapower Molten Chloride Fast Reactor (MCFR) Cheng Xu, M. Wargon
  - MCFR program focused on materials test for design analysis and also leveraged for NRC licensing and qualification
  - Materials of Interest
    - Alloy 625 grade 2
    - Alloy 617
    - 316H
    - Refractory Alloys
    - Ceramics (SiC, etc)
  - Engineering properties of interest
    - Creep, Fatigue, creep-fatigue, corrosion and erosion -(550-800C)
    - Irradiation effects on mechanical properties and corrosion (550-800C, 0-100 dpa fast spectrum)

Inconel alloys are preferred materials because of their known high temperature performance, corrosion performance, weldability and ASME code case



Office of NUCLEAR ENERGY

## University and National Lab Capabilities and Methods

- Capability Needs for Irradiated and Radioactive Material, (S. Pimblott, INL)
- Advanced ODS alloys and routes for application, (TS) Byun, ORNL)
- Nanoscale Mechanical Testing (S. Pathak, Iowa State U.)
- High Dose Ion Irradiation (K. Field, U. Michigan)



### **Innovative Metal Alloys**

- Advanced F/M alloys
- Advanced austenitic alloys (e.g. alumina forming austenitics)
- Refractory Metal Alloys
- High Entropy Alloys
- Metallic Glasses
- Novel microstructures (e.g. nanostructured grain size, fine precipitate distribution)
- Novel manufacturing techniques to produce thin walled tubes
- Joining methods for thin walled tubing
- Coatings to prevent FCCI (if needed)



### **Oxide Dispersion Strengtened** Alloys

- ODS ferritic steels (e.g. 14YWT, 12YWT)
- ODS FeCrAl (e.g. MA956, PM2000)
- ODS austenitic alloys
- Processing methods for producing thin-walled tubes
- Processing methods to form a uniform, fine and stable oxide dispersion
- Joining methods for thin-walled tubing that maintain microstructure
- Coating methods to prevent FCCI (if needed)



## **Ceramics/composites**

- SiC/SiC composites
- Other Ceramic/ceramic composites
- Metal matrix composites
- Processing methods to produce thin walled tubing
- Methods to assure tubing his hermetically sealed (e.g. coating methods)
- Joining methods



### ng d

Office of NUCLEAR ENERGY

### **Innovative Testing and Characterization Methods**

- High dose irradiation testing (e.g. ion irradiation)
- Microscale mechanical testing
- In-situ mechanical testing under irradiation
- Novel characterization techniques (e.g. X-ray) measurements in situ)





Office of NUCLEAR ENERGY