

Molten Salt Reactor P R O G R A M

Molten Salts Thermophysical Properties Determination and Salt Irradiation Experiment at INL

Dr. Toni Karlsson and Dr. Abdalla Abou-Jaoude

Idaho National Laboratory

INL/CON-24-77550

Annual MSR Campaign Review Meeting 16-18 April 2024

Overview

- FY24 Work Packages and Milestones
- WP1 Thermal Properties
- WP2 Capsule Irradiation & PIE
- Next Steps
- Conferences, Articles
- Team

Thermal Properties (AT-24IN070502 - Thermochemical and Thermophysical Properties Database Development – INL)

Milestone Number	Milestone Title	Due Date	Status
M3AT-24IN0705021	Complete Chemical/Isotopic Analysis of Fuel Conditioning Facility Flowloop (FCF) Salt	2/15/2024	Complete
M4AT-24IN0705022	Complete Experiment Plan for Actinide (Pu/Am) Salt Synthesis	8/15/2024	On track
М2	Complete synthesis of plutonium/americium (Pu/Am) metal to chloride and initiate characterization of the salt	2/27/2025	Pending Funding

Salt Irradiation and PIE (AT-24IN070508 - Irradiation of Salt - INL)

Milestone Number	Milestone Title	Due Date	Status
M3AT-24IN0705081	Complete Fuel Salt Irradiations in NRAD	8/18/2024	On track
М2	Draft journal article, "Off-Gas and Initial Post Irradiation Examination Measurements from Enriched Uranium Trichloride – Sodium Chloride Eutectic (UCl ₃ -NaCl) Salt" (working title)	1/23/2025	Pending Funding

Status WP1: Natural Convection Flow Loop Salt Study

- Flow loop material of construction was analyzed (TerraPower)
- Salt was retrieved and characterized by the MSR Campaign
- Post flow loop salt highlights
 - No corrosion products were detected in the salt by ICP-OES (Cr, Fe, Mn, Ni, Zn, etc.)
 - NaCl-PuCl₃ seems to be relatively inert to material tested, hypothesized due to stable +3 valence state as opposed to +3/+4 valence of U in chloride salt
 - The primary salt was "contaminated" with rinse salt resulting in a change in solidus/liquidus temperature and density
 - 10MgCl₂–60NaCl–26PuCl₃ (mol%)

Images of flow loop salt. A.) Pre-flow loop operation and B.) post-flow loop operation.

OSTI Report: INL/RPT-23-74483-Rev000

Status WP1: Salt Synthesis and Properties

- Material has been identified and inspected
- Pu/Am alloy contains approximately 20wt% Am
 - Old sample, need to verify starting material composition and isotopic
 - Perform hydride/dihydride reaction, NH₄Cl to chlorinate
 - Can be mixed with desired salts UCl₃/UCl₄, NaCl, MgCl₂, etc.

Increase surface area of Pu/Am-metal $2Pu/Am + 3H_2 = 2PuH_3/AmH_3$ $2PuH_3 \rightarrow 2Pu + 3H_2$ Supply chlorinating agent $Pu/Am_{(s)} + 3NH_4Cl_{(s)} + NaCl_{(s)}$ $\rightarrow Pu/AmCl_{3(s)} + NaCl_{(s)} + 3NH_{3(g)} + 1.5H_{2(g)}$

Pu/Am metal alloy

Pu-metal (top), NaCI-36 mol% PuCl3 salt (bottom)

4

Status WP1: Salt Synthesis and Properties

- Some MSR concepts propose combining aqueous recycling to recover U/Pu to then burn in a LWR as an oxide/MOX fuel (U, Pu)O₂
- In this scenario the minor actinides such as, Am will be "burned" in an MSR to reduce the footprint of a geological repository
- AmCl₃ has low boiling point, 1253°C
 - Must take precautions and consider vapor pressure of AmCl₃ during synthesis
 - Very interesting salt!
 - Experiments to selectively volatilize AmCl₃
 from bulk salt (not funded)
 - Study pure AmCl₃ salt (not funded)
- Should be able to safely handle AmCl₃ (no mass loss) for T < 775°C (partial pressure below 100 Pa)

 $AmCl_3$ is 166 times more volatile than $PuCl_3$ at 1000 K, with a partial pressure of 7 Pa at its melting point (715°C/988 K). Behavior of the ternary mixture ($PuCl_3$ -AmCl_3-NaCl) is not well understood.

Graphs provided by Dr. Juliano Schorne Pinto (Univ. of South Carolina). Thank you Juliano!!!

Status WP2: Salt Irradiation

- Irradiate molten fissile material-bearing chloride salt with salt-facing materials relevant to MSR development
- Salt sample: 0.66UCl₃-NaCl (93wt%) ۲ ²³⁵U), 40g, 13 cm³
- Why NRAD?
 - TRIGA-fuel MTR-grid pool reactor for neutron radiography PIE
 - Experiment in core ٠
 - Pool type, no pressure ٠
- Predicted Performance under irradiation:
 - Fission Heat = 20 W/cm³
 - Neutron Flux = 3.5×10^{12} n/cm²-s •
 - Gamma Flux = $1.4 \times 10^{13} \gamma$ /cm⁻-s
 - Salt Temperature = 525-900°C

Dr. Abou-Jaoude Abdalla.AbouJaoude@inl.gov

- 2. Thermophysical Property Evolution
 - 3. Salt-facing Materials Corrosion

SS316 Radiative heat shield reduces heat loss. at high temperature section of capsule

Molten salt (UCI₃-NaCI)

Bottom centering feature

Capsule Irradiation Experiment Overview & Goals

Mission Statement

Establishment of a domestic neutron irradiation capability for fissile material-bearing salts for Molten Salt Reactor (MSR) R&D.

Executing Research in Three Primary Areas

- I. Radioactive Source Term Quantification
- 2. Thermophysical Property Evolution
 - 3. Salt-facing Materials Corrosion

Mission Realization

Utilize the Neutron Radiography Reactor (NRAD) to irradiate molten fissile material-bearing chloride salt with salt-facing materials relevant to MSR development

MRTI Inner Capsule

Status WP2: Salt Irradiation

- Placed in the NRAD reactor in August 2023
- Will remove capsule on June 4th
 - Expected Burnup = ~0.2MWd/kgHM
- Cask transfer to HFEF main cell on June 5th
- "Rapid" PIE to begin June 6th (pending funding)
 - PGS
 - Radiography
 - Off-gas analysis (PNNL collaboration)
 - PGS
 - Salt Extraction
 - Elemental/isotopic/impurity
 analysis

UCI₃-NaCI salt synthesis performed by Dr. William Phillips (INL)

Insertion of experiment in NRAD core on 08/21/2023

Richard Cox (PNNL) Off-Gas Analysis

FY24 Next Steps

Shawn Reddish, transuranic glovebox operator making salt samples

• Am/Pu Salt Synthesis

- Draft experimental plan
- Hydride/dihydride of Pu/Am metal (FMF) Pending Funding
- Synthesis of Pu/AmCl₃-NaCl salt (FMF) *Pending Funding*
- Prepare sample for transfer (FMF to ARL) Pending Funding
- Stability, melting temperature, Cp, and enthalpy determination (FFGB)
- Density (FMF)

Capsule Irradiation

- Wrap-up irradiation, June 4th (NRAD)
- Cask transfer fuel assembly with capsule to decon cell (HFEF)
- "Rapid" PIE (Pending Funding)
 - PGS-1 (HFEF)
 - Radiography (HFEF)
 - Collect gas sample (HFEF to PNNL)
 - PGS-2 (HFEF)
- Write article

Pu/Am metal alloy (left), Irradiation capsule (middle), UCI₃-NaCI salt before irradiation (right)

Synthesized by Dr.

Importance

Through the MSR Campaign, utilize competences and capabilities to allow collaborations between national lab and universities (PNNL, INL, U of SC).

Experimental and computational researcher, working together to solve common problems. "Speak the same language"

Novel research helping to advance our understanding and predictions of MSR fuels.

Conferences/Presentation

• 2024 TMS

- Discussion on the Lessons Learned, Tips, and Tricks When Measuring Thermal Properties of Molten Salts (Presentation)
- Irradiation of Enriched Uranium Bearing Chloride Salt (Presentation)

ORNL MSR Workshop

- Thermal Properties and Related Activities at INL
- Plutonium Futures
 - Experimental Investigations on the NaCI-PuCl₃ Eutectic Salt System

Papers

- Thermophysical Properties of NaCI-UCI₃-PuCI₃ Molten Salts: A Combined Computational and Experimental Study, Manuscript in process (Manh Nguyen, PNNL leading)
- Corrosion in a Natural Convection Flow Loop Containing NaCI-PuCl₃ Salt, Manuscript in process
- A Comparative Study and Determination of Thermophysical Property for LiCI-KCI Eutectic, Manuscript in process
- Off-Gas and Initial Post Irradiation Examination Measurements from Enriched Uranium Trichloride – Sodium Chloride Eutectic (UCI₃-NaCI) Salt

Teammates

- Teamwork makes the dream work!
 - Brought together by the MSR Campaign •
 - INL, PNNL, U. of South Carolina
- Goal: Work as a united, cross-disciplinary team, to collect first-of-a-kind data needed for model validation, database development, and MSR deployment

Abdalla Abou-Jaoude

Toni Karlsson

Richard Cox

Juliano Schorne Pinto

Steve Warmann Manh Nguyen

Morgan Kropp

Scott Middlemas

Nick Erfurth

Michael Karlsson

Robin Roper Michael Woods

Thank you

Your email Address

Office of **NUCLEAR ENERGY**