

Molten Salt Reactor P R O G R A M

Laser-Induced Breakdown Spectroscopy Isotope Ratio Measurements

Hunter B. Andrews Oak Ridge National Laboratory

Annual MSR Campaign Review Meeting April 2024

ORNL is developing LIBS for nuclear technology across the board

The off-gas treatment system development is critical for continued MSR development

MSR Challenges

- Liquid fuel
- Inert environment
- Radiation
- Aerosol formation
- Changing chemistry

MSR Off-gas streams can be monitored using LIBS

Aerosol In

Salt isotopes impact a reactor's ³H generation

Andrews et. al., Nuclear Engineering and Design., 2021, 385, 111529.

How can LIBS measure isotopic signatures?

- LIBS emissions come from transitions from upper to lower energy states in the excited species
 - Small changes in these transition frequencies can be generated from minor differences in the nuclear structure of different isotopes
- The main isotopic effects stem from changes in mass, nuclear spin, and nuclear charge distribution

The main contribution to isotopic shifts changes based on the region of the periodic table

Laser ablation molecular isotopic spectroscopy (LAMIS) extends the isotopic measurement abilities of LIBS

- Molecular emissions form later in the plasma lifetime as species in the plasma plume recombine
- The formed isotopologues have larger isotopic shifts
- The vibrational and rotational contributions to the molecular energy levels are strongly dependent upon the mass difference between isotopes

Laser ablation molecular isotopic spectroscopy (LAMIS) extends the isotopic measurement abilities of LIBS

11

The approach to isotopic measurement varies based on the region of the periodic table

FY23 work package targeted establishing these capabilities within the MSR campaign

Three spectrometers and two sampling methods were compared to measure hydrogen isotopes

Туре	Model *	Resolution (pm)	Wavelength Range (nm)	Delay (µs)	Width (µs)
Compact	Avantes, Avaspec 2048	107	501-722	3	1050
Echelle	Andor, Mechelle 5000	39	200-895	2	50
High-resolution	LTB Lasertechnik Berlin, DEMON	3.2	654–658	2	50

The difference in resolution and sensitivity varied greatly

A test sample doped with gadolinium was used to evaluate model and spectrometer versatility

Next, an aerosol system was explored to be more representative of a molten salt offgas

Overview of real-time test results

- Pure H₂O was run to establish a baseline. $\overset{O}{\underset{1}{\sim}}_{1}$ (~3.8 min), a spike of FLiNaK in D₂O was added. 2.
- t_2 (~7.5 min), a spike of FLiNaK in H₂O was added. 3.
- t_3 (~10.2 min), a spike of pure H₂O was added. 4.
- t_4 (~13.6 min), the entire reservoir was replaced 5. with pure H_2O to return to the baseline.

1.0 - (c)Normalized Intensity 0.8 Li 0.6 Κ 0.4 Na 0.2 0.0 12 14 8 10 16 (d) 60 PLS (1) PCR (2b) PLSR (2b) MCR (2b) 20 10 12 14 16 8 Time (min)

LIBS spectra were recorded in 100 shot accumulates at 10 Hz, providing 100 spectra over the 16.6 min.

Moving forward we now have the ability to test isotopic measurements within our ongoing LIBS monitoring efforts

Small-scale aerosol LIBS

Fiber delivered LIBS

Large-scale aerosol LIBS using mobile platform

Molten Salt Reactor P R O G R A M

Thank you

Hunter Andrews, and rewshb@ornl.gov

