Potential Grid Services and Integration Challenges

Microreactors as Distributed Generation

Peggy Ip Engineer Scientist

Microreactor Program Stakeholders Workshop May 13, 2021

 Image: The second system
 Image: The second system

 Image: The second system

Today's Discussions

Grid Services

What services can microreactors potentially provide at the edge of the grid?

Integration Challenges and Considerations

How can microreactors integrate and provide these services & benefits?

www.epri.com

Grid Services and Value Stacking

 There are many values which DGs and DERs can provide throughout the grid domain, including generation, transmission, distribution (T&D) and customer services.

Market Services

- Day-ahead energy time shift
- Load following
- Frequency regulation
- Spinning reserves
- Non-spinning reserves
- Resource Adequacy Capacity

T&D Services

- Transmission/ distribution upgrade deferral
- Reliability/resilience

Customer Services

- Onsite generation, including combined heat and power
- Reliability/resilience
- Power quality
- Energy and demand charge management

Fueled DGs in Low Carbon Future

Combined Heat & Power:

- Capacity dominated by combustion turbine, steam turbines
- Primary fuel: natural gas, followed by coal
- Co-locating thermal and electric generation is more efficient than separately
- Decarbonization industrial heating is challenging
 - Low-carbon technologies and options limited
 - High temperature applications
- Increased interest in disaster resilience and reliability

Source: DOE CHP Installation Database

Definition of Microgrid

EPRI's Definition of "Microgrid"

"A group of interconnected loads and distributed energy resources within clearly defined electrical boundaries that acts as a single controllable entity with respect to the grid and that connects and disconnects from such grid to enable it to operate in both grid-connected or 'island' mode."

- While a microgrid must, by definition, be able to operate islanded, there are few reasons to island if the external grid is available.
- Microgrids may or may not be capable of long-term islanded operation.
- Varied circumstances encountered in microgrid proposals present challenges to cost-benefit analysis.

Local vs Area Electric Power Systems (EPS)

Key Themes: Microgrid and Resilience Research Activities

Technical Considerations for Microgrid Interconnection

Transition Requirements:

- 1547-2018 highlights, standards consideration
 - Clause 8 Islanding
 - Annex F use cases
- Planned utility grid disconnection
 - Utility communication and permissions
 - Seamless disconnect option
- Black start
 - Break-before-make option
 - Inrush and cold load considerations
- Resynchronization, paralleling
 - Seamless reconnect option
 - Cold load pickup allowance

- Island Operation:
 - Mode change (grid forming)
 - Settings change (switch from antiislanding)
 - Allowance for wider settings
- Protection requirements and coordination

Common Challenges

www.epri.com

Protection Coordination

Some Grid Integration Considerations for Microreactors...

- Grounding
- Protection
- Islanding
 - Unintentional, intentional, scheduled
- Transitions
 - Open transition, closed transition, "seamless" transfer
- Black start
 - How much load? Reactive power, inertia? Black start sequence?
 - Depends on primary mover of microreactors: response time, ramp rate, thermal requirements?
- Integration
 - Controller and how the DGs/DERs are managed
 - When connected to the grid versus islanding
 - Who is controlling interconnection? Who is managing the connectivity to protection devices?
- System impact
 - Will the microreactor have a negative impact on the broader system?
 - Interconnection considerations

Grid Considerations for Microgrids – Takeaways

- Interconnecting microgrids requires defining operating modes, transition scheduling and related Area EPS notifications.
- Microgrid transitions on and off the grid (i.e. open vs closed), and related design, need to consider nuances and
 potential gaps when applying IEEE 1547 requirements.
- Microgrid interoperability specifications need to address island scheduling and timing details, protection and grid support responsibilities. Standards may evolve to support these.
- Unscheduled island transitions from on grid disturbances need to also support ride-through requirements before exiting; this is a challenge to closed or "seamless" transfers.
- Microgrid behavior during loss of communications needs to be better defined; consequences vary and depend on the relative size and design.
- Permit service requirements in IEEE 1547 cover both synchronized, "closed," transition of islands and "open" DER return to grid service. (load restoration is not covered, and delay is not implied)
- This work identifies needed standards for facility (single customer or local EPS) microgrids. Future work is planned to address multiple customer (area EPS) microgrids.
- During island operations, facility (local EPS) microgrids are not included in the IEEE 1547 scope; future microgridspecific standards may be needed to address off-grid performance.
- IEEE 1547 addresses grid-connected microgrids as intentional islands.

2021 Whitepaper: Grid Considerations for Microgrids (PID: 3002020344)

11

Together...Shaping the Future of Electricity

Thank you

Peggy Ip Engineer Scientist pip@epri.com

