LANL High Temperature Moderator update

A.P. Shivprasad, J.R. Torres, A.M. Long, N.A. Regis, M. Pate, T. Nizolek, E.P. Luther, and H.R. Trellue

Work package consists of 4 main areas

- Updates to advanced moderator material handbook
- Hydrogen permeation measurements
- Neutron imaging measurements
- Cladding studies

Fabrication and testing of coated cladding materials for hydrogen containment

Permeability testing of moderator cladding materials

Figure courtesy of B. Derby, LANL

PVD allows for the control over microstructural:

- Shape
- Spacing
- Crystallography, Texture
- Defect structure
- Chemistry

Hydrogen permeability is measured through candidate materials by measuring the D2 flux through a sample

Microstructural characterization of SS316L Swagelok blind gaskets

 Basic microstructural characterization of SS316L Swagelok blind gasket (crosssec)

 Electron Backscatter
 Diffraction (EBSD) grain map shows equiaxed grain structure

100 µm

Gold electroplating appears to reduce the H permeability of 316L SS

- 10 µm gold electroplated SS showed a minor improvement in performance.
 - Both sides electroplated with 10 µm gold (20 µm total).
- Gold plating changed color during measurement
 - Alloy with Ni-strike layer at elevated temperatures

Before

After

Post-mortem characterization gold electroplated SS sample showed microstructural change with permeability testing

 Gold layer thickness changed with processing

Permeability testing of W-coated (PVD) 316L showed no significant improvement over 316L

H2 permeation test of coated and uncoated 316L

Neutron imaging: furnace and setup at Los Alamos Neutron SCience Center (LANSCE) flight path 5 (FP-5)

Assembled the *upgraded* compact dualzone furnace at FP-5 thermal imaging beamline...

- MCP/Timepix detector
- Sample (in insulation)
- Quartz tube (on furnace)
- Upgrades:
 - S-bond ® quartz-to-metal tube seal, plus...
 - ConFlat seals → leak tight
 - Linear motion device → variable sample length
 - Modular design (gas, thermometry, etc.)
- Performed gas flow and heating tests.

Neutron imaging: day 1 - YH_x stack

Red \rightarrow High H neutron attenuation Blue \rightarrow Low H neutron attenuation

- A stack of two YH_x samples (x = 1.6 and 1.9) in a TZM can.
- Apply various temperatures, both isothermally (e.g., 700 top and 700 bottom) or with a gradient (e.g., 700 top and 800 bottom).
 - Gradients between 100 and 200 °C (controlled)
- Image corrections need to be applied
- Analysis is ongoing

Red \rightarrow High H neutron attenuation Blue \rightarrow Low H neutron attenuation

Neutron imaging: day 2 - YH_{1.6}

- A YH_{1.6} pellet in a TZM can.
- Apply various temperatures, both isothermally or with a gradient.
 - Gradients between <u>50 and</u> <u>500 °C</u> (controlled)
- Image corrections need to be applied
- Analysis ongoing

Red \rightarrow High H neutron attenuation Blue \rightarrow Low H neutron attenuation

Neutron imaging current status

- Finish image analysis.
- Work with modeling expert(s) to simulate H concentration using experimental data – understand (null) results.
- Build a back-up furnace for future measurements.
- Secured beam time at ORNL to perform quasi-elastic neutron
 scattering measurements on YH_x powder: a capability that provides the self-diffusion coefficient of hydrogen at high temperatures.
 - Designing two different samples cells for safety and neutron transparency: quartz and TZM.
 - Beam time August 2-8, 2023.
 - Time allotted for 2 different samples, e.g., $YH_{1.6}$ and $YH_{1.9}$.
- Discussing feasibility of performing neutron imaging at the University of Missouri.
 - Back-up to Lujan.
 - Test hardware and/or technique.
 - Networking and collaboration; MURR seeks to construct an imaging station.

FY23 milestones

- 1. M4AT-23LA0804031-Fabricate and test coated cladding materials for hydrogen containment of hydride moderators
 - Due March 1st, 2023 on track
- 2. M4AT-23LA0804033-Measure hydrogen loss and redistribution from YH measured by neutron imaging
 - Due March 31st, 2023 on track
- **3.** M3AT-23LA0804032-Complete report of hydrogen mapping and dynamics in YH characterized by neutron imaging methods
 - Due end of FY
 - Impacted by loss of neutron beam time at LANSCE
 - Will pursue other neutron beamlines to complete
- 4. M3AT-23LA0804034-Update advanced moderator material handbook
 - Due end of FY on track pending PIE from INL

