

GAIN Innovative Materials Research High-Temperature Gas-Cooled Reactors

Farshid Shahrokhi

Director of High Temperature Reactor Technology

Gain Innovative Material Research

Framatome History of HTGR Development

- 1960s, 70s, and 80s
 - Framatome GmbH Pebble Bed HTGRs
 - AVR 46 MWth test reactor
 - THTR 750 MWth cogeneration reactor
 - HTR-Module 200 MWth (beginning of modular HTGR development)
- 1990s and early 2000s
 - GT-MHR 600 MWth prismatic core, Brayton Cycle.
 - Collaboration with Russian Federation and General Atomics
- Mid to Late 2000s
 - **ANTARES** Project 600 MWth prismatic core, Indirect cycle with combined cycle gas turbine generation
 - US DOE NGNP project Modified ANTARES design
- Late 2000s to Present
 - Steam Cycle HTGR reference plant
 - 4 x 625 MWth, prismatic core, cogeneration of high temperature process steam and electricity
 - Optimized for passive safety and lowest cost of energy
 - Scalability of reference concept provides variants for smaller markets (all use the same fuel)

625 MWth reference54 MWth remote site315 MWth single SG10 MWth Micro-HTGR180 MWth EU steam only7 MWth mobile micro HTGR

framatome

3

Framatome 625 MWt SC-HTGR A modular High Temperature Gas-cooled Reactor

- Net electric output 272 MWe / module
 - In all electricity mode (43.5% net)
- **Reactor temperatures**
 - Core inlet/outlet: 325°C / 750°C
 - Process steam: 566°C
- Reasons for selection

framatome

- High temp steam satisfies most process heat needs today
- Minimized technical risks to allow completion of the FOAK demo plant in early 2030s
- Prismatic HTGR has lowest unit cost
- **Excellent safety characteristics**
 - Safety does not require AC power
 - Safety does not require reactor coolant
 - Safety does not require operator action
- Excellent investment risk profile
 - Plant can be restarted after any Design Basis Accident
- Provides path for improving technology incrementally for future higher temperature process heat needs and industrial scale hydrogen generation

Farshid Shahrokhi

Framatome 600 MWt V-HTGR A modular Very High Temperature Gas-cooled Reactor

- Net electric output 290 MWe / module
 - In all electricity mode (48.5% net)
- Reactor temperatures
 - Core inlet/outlet: 400°C / 850°C
 - Process Heat: 800°C
- Reasons for selection
 - Very high temp heat most process heat needs
 - Prismatic HTGR has lowest unit cost
 - Excellent safety characteristics
 - Safety does not require AC power
 - Safety does not require reactor coolant
 - Safety does not require operator action
 - Excellent investment risk profile
 - Plant can be restarted after any Design Basis Accident

framatome

Farshid Shahrokhi

5

Materials of Construction

- ✓ Available Now
- $\sqrt{}$ Requires development & codification $^+$
- Fuel (UCO kernel TRISO coated particle)
- Core Graphite (SGL-Carbon NBG-17, Toyo-110)
- Vessel Systems (SA-508/533) / (9Cr-1Mo)
- Reactor Internals (Alloy 800H, Graphite)
- Steam Generator (Alloy 800H, 2.25Cr-1Mo)
- Intermediate Heat Exchanger (Ceramic)
- Instrumentation and Controls
- Decay Heat Removal (RCCS)
- Circulator (submerged motor, magnetic bearings)
- Reactor Building (concrete)
- Refueling Machine

AGR irradiation data and NRC topical AGC characterization, ASME Sec. III Div. 5 ASME Section III, (no cladding required) ASME Section III Div. 5 Helical coil tubes (He-to-steam), TEMA Helium to Molten Salt, TEMA IEEE Standard (analog or digital) Steel panels (ASME Section III) ASME Section III (housing) ACI standard Semi-automated refueling

framatome

6

Process Heat

HTGRs can generate heat at higher temperatures necessary for certain industrial processes

Potential to Displace Fossil Fuels

HTGR technology is the near-term energy source capable of displacing the use of fossil fuels for high-temperature process heat and/or electricity generation while emitting almost no CO_2 .

 Process heat and electricity can be supplied for petrochemical refining, chemical processes and extraction, upgrading of bitumen from oil sand and shale, replacing or supplementing premium fossil fuels.

0

 Low CO₂ emissions enable premium fossil fuels to be used as feedstock for higher-value products, such as chemicals and synthetic fuels that add multiples of gross returns instead of simply burning as fuel.

Cogeneration of Electricity, Steam, Heat

framatome

Near-Term Market Potential

- North America/USA: 250-500°C = 75.000MWt (or 150-300 reactors)
- Mostly Petroleum products:

500-700°C = 65,000MWt (or 130-260 reactors) (Petroleum + Ammonia). Easily achievable today.

Allows flexibility of operation, switching between electricity and process heat

800 – 1000 °C VHTGR (IHX for direct process heat) 500 – 900 °C 350 – 800 °C SC-HTGR (Steam) 300 – 600 °C LWR (Steam) 80-200 °C 250 – 550 °C 100 200 400 700 800 900 300 500 600 1000 Process Temperature (°C)

Temperatures required for various industrial processes

SC-HTGR is Optimized to Provide Maximum Benefit to the Overall Energy Mix in the Near-Term

- Process steam market exists now
 - Largest segment of the process heat market
 - Depends entirely on fossil fuels
 - Requires no modification of existing chemical plants to use high temperature steam from SC-HTGR
- Market for direct very high temperature heat is longer-term
 - Smaller than high temperature steam market
 - More fragmented requires customized interface for different applications
 - Existing chemical processes require further development for integration with heat from very high temperature reactor
- Reactor technology similar between steam cycle HTGR and VHTR
 - Largest VHTR challenge is high temperature energy transfer interface
- Focusing on steam cycle HTGR provides best short-term and longterm solution
 - Partitioning risk between HTGR and VHTR projects reduces risk for each project

Required Development	SC- HTGR	Future VHTGR
Fuel Qualification	X	
HTR Siting	Х	
HTR Licensing	X	
Process Interface Issues	Х	
Safety Case Validation	X	
Very High Temperature Materials (metals, ceramics)		x
IHX Development (gas or salt)		X
Very High Temperature Process Interface		X

Farshid Shahrokhi

8

framatome

Questions

F.Shahrokhi@Framatome.com

Farshid Shahrokhi

9

Gain Innovative Material Research