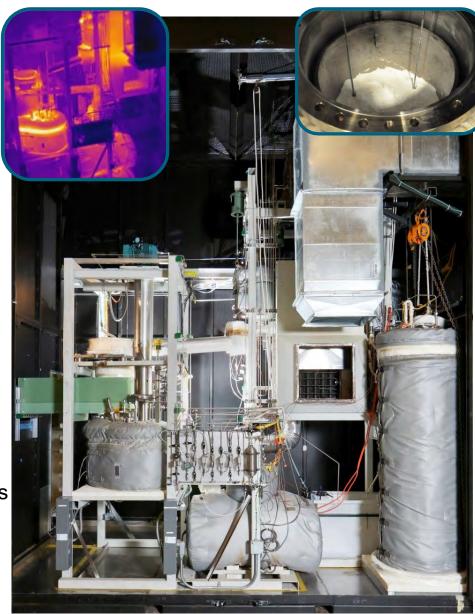


Molten Salt Reactor P R O G R A M

Salt Loop and Capability for Testing Sensors and Off-Gas Components FY23

Kevin Robb Oak Ridge National Laboratory

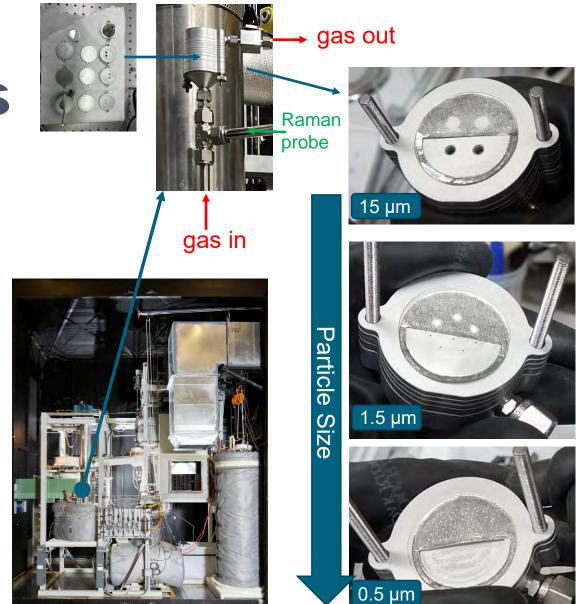

Annual MSR Campaign Review Meeting 2-4 May 2023

What is the Liquid Salt Test Loop? (LSTL)

Largest F salt loop in DOE

Salt	NaF-KF-LiF (FLiNaK)
Operating Temp.	700°C
Flow rate	≤4.5 kg/s (136 lpm)
Operating pressure	Near atmospheric
Primary Materials	Inconel 600
Loop volume	80 liters
Power	200 kW induction ~20 kW trace
Primary piping ID	2.67 cm (1.05 in.)
Initial operation	Summer 2016

- Integral environment for testing and demonstration of technologies
- Large batch (165 kg) purification system to prepare/refresh salt
- Appreciable power and I&C
- Was and still is state-of-the-art


LSTL FY23 progress

• Restarted LSTL in Nov 2022 yielding initial experimental data on:

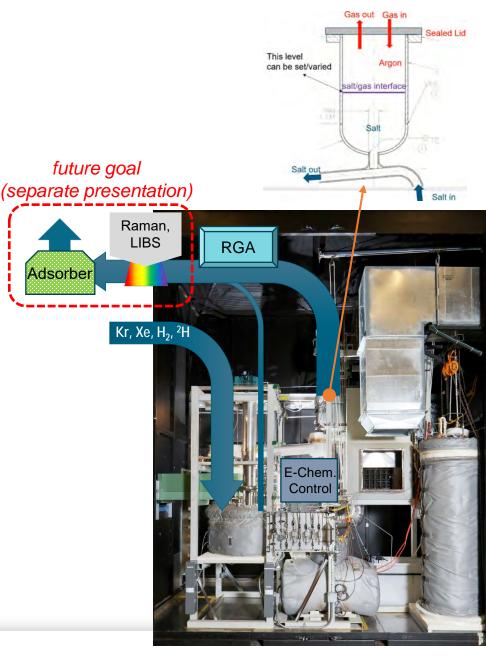
- PNNL Raman probe exposure (separate pres.)
- ANL E-Chem sensors operation (separate pres.)
- ORNL gas-space particle capture
- New test section performance
 - 4 pump speeds, 4 hours, 600°C operation

• Input into modelling:

- ORNL SAM model (separate pres.)
- SNL MELCOR model (separate pres.)

LSTL FY23 upcoming

test planning


Data output for

- Planning 2nd test for FY23
- 2nd round of testing for:
 - PNNL Raman probe exposure
 - ANL E-Chem sensors operation
 - ORNL gas-space particle capture
 - Thermal hydraulic system performance MSTDB-TC for

• 1st round of testing for:

- Species transport test
 - He, 4% H₂, and Kr injection
 - Monitoring of off-gas
- NEUP Virginia Tech: flow meter
- specie transport code Small business: system PLC monitor

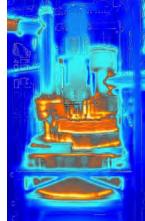
Milestone 9/2023: M3RD-23OR0602052: Molten Salt Loop Testing of Sensors and Off-Gas Components - FY23 progress

LSTL FY23 and beyond

• Objectives for FY25 includes:

- De-risked sensor technology for industry adoption
- Validation data sets for tools to support MSR analysis and optimization

FY	Objective
FY23	 Testing of optical and electrochemical sensors Salt vapor and aerosol retention/transport Noble gas species transport studies
FY24	 Iodine, deuterium, cerium species studies Expanded species transport studies, combined species effects Test existing sensors from expanded collaborators (e.g. pressure, flow, correction, composition)
FY25	 corrosion, composition) High-quality data for code validation, (e.g. SAM, MELCOR, TRACE) Other piggyback tests – adv. materials/coatings, hardware, O&M methods


Facility to Alleviate Salt Technology Risks (FASTR)

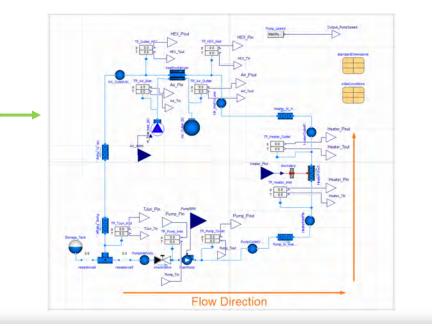
Largest CI salt loop in DOE

Salt	NaCl-KCl-MgCl ₂
Operating Temp.	725°C
Flow rate	≤7.0 kg/s (228 lpm)
Operating pressure	Near atmospheric
Primary Materials	C-276 & Inconel 600
Loop volume	154 liters
Power	400 kW Main Heater ~71 kW trace
Primary piping ID	5.20 cm (2.05 in.)
Initial operation	December 2022

Compared to LSTL, FASTR is: 2x higher capacity pump 2x larger salt volume 2x larger pipe 2x thermocouples 2x main heating capacity 3x trace heating capacity 4x number of salt flanges

Development support by DOE-EERE SETO CPS 33875

Robb, Kevin, and Kappes, Ethan. Facility to Alleviate Salt Technology Risks (FASTR): Commissioning Update. United States: ORNL/TM-2023/2846, 2023. Web. doi:10.2172/1960689. Robb, Kevin, Kappes, Ethan, and Mulligan, Padhraic L. Facility to Alleviate Salt Technology Risks (FASTR): Design Report. United States: ORNL/TM-2022/2803, 2022. Web. doi:10.2172/1906574.


FASTR Example Synergy DOE-NE Integrated Energy Systems

Physical Loop generating experimental data

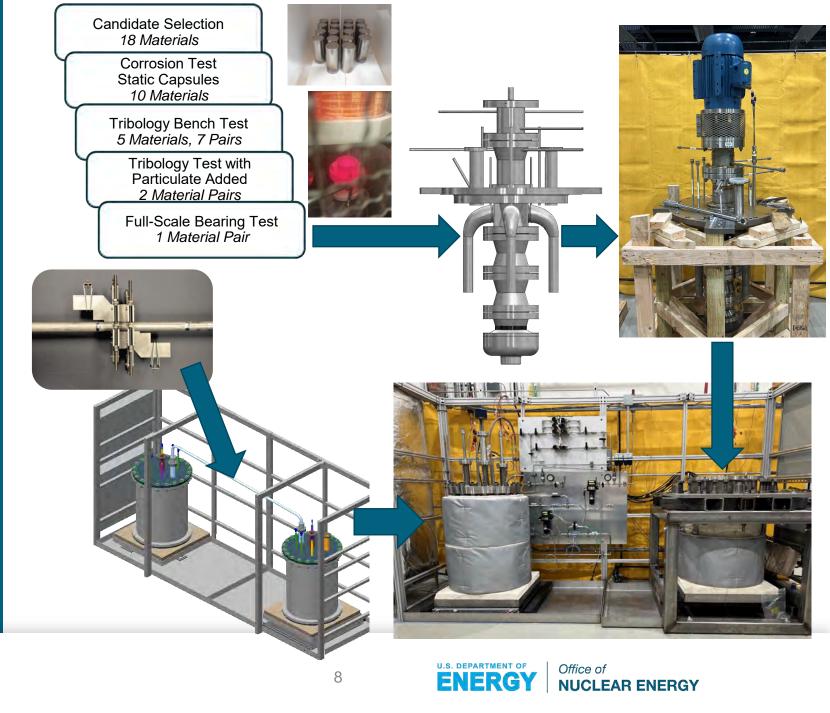
System-level Representation

- Dymola IDE
- 1-D representation of components
- Avg. compute time on the order of seconds.
- Model validation currently underway.

Digital Twin (DT) for autonomous control

- DT of the Modelica model/ROM (using pyDMD) for faster runtime and calibrated to experimental data – currently underway.
- Connected to the DÁQ system to inform operator on potential deviation from normal operation.
- Currently setup to only read the tags from the LogixDriver and run an FMU of the Dymola Model.

Created on April 17, 2023
Bauthor: Vincet Kumar
This script interfaces with the Allen Bradley and sends values to an FMU
from pycomm3 import LogixDriver, CIPDriver from runFMU import run_fmu
<pre>def find_attributes(): values = [] with togExDeriver('192.168.0.6/1') as plc: print(plc) tags = ['F_02_Ref','P_01_Ref','TC_M4_01'] plc.read('tags) for typ in plc.data_types: values.append(plc.data_types[typ]['value']) return values</pre>
values = find_attributes()
output = run fmu(values)
print(output)

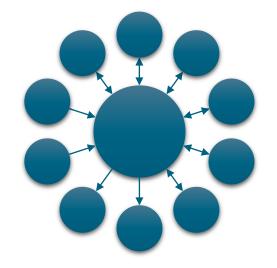

Office of

NUCLEAR ENERGY

Studio 5000 Logix designer via Pycomm3. Department of

Salt Flow Calibration and Bearing Test Stand

- Demonstrate salt-wetted bearings to <u>enable long-shaft</u> <u>pumps for pool-type reactors</u> and <u>larger sized pumps</u>
- Flow calibration stand for <u>development of standards</u> and to <u>calibrate flowmeters</u> for <u>accurate and defensible data</u>
- Funded external to DOE-NE
 - Unique circumstances in both projects led to insufficient support continuity to complete, to date


Roles of this type of effort

Forms a hub for technology:

- Advancement & demonstration
- Collaboration & communication
- Independent verification
- 1st mover risk/cost absorption
 - Supply chain motivator

University

- Coupon exposure (GT NEUP)
- Flow meter test (VT NEUP)
- Lesson learned communication
- Education experience (interns)
 Small business
- Sensor demo. (SETO)
- System monitor demo. (LEEP)
 Laboratory
- ANL e-chem sensor
- PNNL Raman sensor
- ANL/ORNL SAM V&V
- SNL MELCOR V&V
- INL/ORNL digital twin (IES)
- Gas space particle transport
- Specie transport plans
 - Off-gas monitoring
- Topical component studies -
- MOSARD (reliability database)
- Property databases (usage)
- etc...

- -• Pump
 - Valve
 - Heater
 - Heat exchanger
 - Flanges
 - I&C

Thank you

Kevin Robb robbkr@ornl.gov

