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Objective [ﬁ

Explore traditional safeguards methods for molten salt reactors (MSRs) and
determine limits imposed by measurement and computational uncertainties.

Key Questions

o Are traditional safeguards approaches used for large throughput facilities
effective for MSRs?

o What is the lower limit of detector performance (statistical) that is required to hit
future regulatory targets?

o Are novel approaches required to safeguard MSRs?




Traditional Safeguards Principles

Traditional safeguards that attempt to directly quantify actinides of interest require
several key properties:

e Establishment of material balance
areas

e Periodic material balance calculation

o Statistical tests and transforms for
detection of material loss

» Low uncertainty measurements

o




Unique MSR Challenges

MSRs:
e Fuelisin

o Will likely require near real time
accounting (NRTA) principals

e Constant
e Constant

o lIsinventory loss due to nuclear
losses or adversarial theft?

o Requires incorporation of burnup
calculations for material
accountancy

e Salt

o Salt concentration from NDA or DA
will be combined with salt volume
estimate for total actinide inventory

o

Conventional Nuclear:

e Fuel is in discrete items

¢ No feeds and removals outside of
outages

o Many fuel assemblies with potentially
different burnup and enrichment

¢ Factors that impact burnup well
characterized (axial and radial
effects)

e Have methods to ensure spent fuel is

present when too hot to measure (i.e.
Cherenkov)




Inventory Difference (ID) calculation

ID calculation
(1)}

ID; = (Xi_,inputs) — (XL_;outputs) — (inventory, 4 —inventory,)

Fresh fuel salt from online refueling

Continuous removal (FP, noble metals)
Nuclear gains

Nuclear losses

Current MSR inventory




Use case: Molten Salt Demonstration Reactor (MSDR) @i

Wide range of MSR designs creates the need for a reference design with common
MSR features. MSDR was designated by ORNL as a baseline design for this
purpose.

e 750 MWty / 350 MW,
LiF - U fuel salt - 5% enriched
Continuous fission product gas removal

Continous removal of some noble metals
Continuous feed of LEU
o Flow optimized to maintain 238U inventory

Salt lifetime assumed to be eight years




General observations: inventory growth

o Total plutonium inventory grows
over time

e Equilibrium not reached within 1200
salt lifetime

o Static safeguards criteria
present challenges

o Normal metrics for
beginning-of-life result in 400
impossible targets for 200
end-of-life (low thresholds)

o Normal metrics for ) 560 1000 1500 2000 2500 3000
end-of-life result in poor Time (days)
targets for beginning-of-life
(high thresholds)

o Need safeguards criteria that
change with time? I
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Uncertainty in isotopic prediction due to nuclear data

e Uncertainties for individual
Pu isotopes are relatively
small

o Maximum of 3% for 242Pu

o Minimum of 1.12% for
239 Pu

o Depends on isotope and
burnup

o Independently confirmed
via work from PSU

e Combined (total Pu)
uncertainty can be more
sizable at end of cycle at
~ 4%.
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Constructing the MSDR material balance @i

e Inputs and outputs should be zero for the Pu material balance (MB)

o Continuous feed (input) only applies to U
o Continuous removal (output) only applies to FP and noble metals

e Assume periodic measurements of concentration and salt mass are possible

e Assume reasonable ability to measure reactor conditions to enable good
depletion estimates

MSDR ID calculation

IDt = inventory measured,: — INVENtOrY cajcuiated.t (2)

Follows the usual ID conventions that ID should be zero and that ID deviations from
0 should be caused by measurement and/or calculation error. Even when restarting
burnup calculations to account for different reactor conditions this approach should |
capture loss (i.e. @ mean shift in ID will still occur).



MSDR MB - bulk mass

Calculation of the MSDR material balance will require two measurements; a
concentration measurement derived from DA/NDA and a bulk salt estimate.

MSDR ID calculation with salt estimate
ID; = inverr[o"Ymealsured,t - ir]Vemorycalculated,t
|Dt — Msalt(Cmeas - Ccalc)




MSDR material balance under normal operation @i

e SEID (standard error of

inventory difference, o)p) is

significant, particularly at

end Of Salt ||fe Average ID and 20p during normal operation
— ID

o Assumed 30 day balance 100 +200
period (no impact on SEID
due to ID formulation)

o Assumes ~ 4%
uncertainty in calculated
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concentrations from -50
burnup calculation
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Time (days)

measured concentrations

o Assume =~ 1% uncertainty
(R,S) in measured salt I
mass



MSDR material balance under loss conditions [ﬁ

e Material loss not easily

deteCted Via ID Average ID and SEID during material loss
« Loss of ~ 1SQ << SEID 1000 10 for toss scenario
o Large inventory of Puimplies | ouereon windon
small fraction of material ;
needed to obtain 1SQ AN s
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MSDR (average) material balance under loss conditions

Average ID and SEID during material loss
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MSDR material balance (single run) under loss conditions

Single ID and average SEID during material loss
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| SEID vs measurement uncertainty

o Decreased measurement error doesn’t
buy much

Impact of measurement error and salt lifetime on oip

. . 3.0
o Puinventory is large _
o Lower uncertainty just buys g 25
more time before SEID is > 38Q s S02
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unlikely

o Likely a few extra % of
uncertainty due to model
assumptions and simplifications



SEID error contribution

e Calculated inventory

is dominant Contributions to o7,
contributor to —— Measured Inventory

. 3000 Calculated Inventory (Burnup code)
Inventory error 2500 —— Joint Contribution

e Computational
uncertainty set g
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bound is nuclear data =
uncertainty at 4%)
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FY22 outlook

o Strategies for improving the MB
o Improved burnup tools and UQ
o Novel strategies for designing
the MB
o Operational activities that could
improve actinide quantification

o Strategies that do not rely on direct
quantification and the MB
o Increased containment and
surveillance
o Use of process monitoring
measurements
o Data science based methods

o Unsupervised machine
learning
o Pattern recognition




Conclusions®, so far

o SEID is large

o Improving measurements will only improve
statistics to some degree

e Uncertainty arising from computational sources
(i.e. burnup calculations) remains challenging

o Alternative strategies to the material balance
might be needed to implement effective
safeguards

o Credit for self-protecting nature of the
material

o Integration with process monitoring

o Increased reliance on containment and
surveillance

*Analysis presented here only considers a specific case of a thermal MSR with LEU-type fuel. Different
designs and fuel cycles may have different conclusions.



