GAIN-EPRI-NEI ADVANCED REACTOR SAFEGUARDS & SECURITY WORKSHOP

MATERIAL CONTROL TECHNIQUE VALIDATION FOR PEBBLE FUELED REACTORS

CLAUDIO GARIAZZO, PHD

Principal Nuclear Engineer Argonne National Laboratory <u>cgariazzo@anl.gov</u> (630) 252-4812

April 14, 2021

SUNIL CHIRAYATH, PHD

Associate Professor of Nuclear Engineering and Director Center for Nuclear Security Science and Policy Initiatives, Texas A&M University <u>sunilsc@tamu.edu</u> (979) 492-9117

INTRODUCTION

- Developing a unique technique for rapid-identification of pebble types for material accountancy/process control
- Based on material control concept:
 - Embedded inert microspheres in outer graphite layer of the pebble
 - Imaging outer graphite layer for pebble classification
- Batch accounting categorized by sets of item specifications
 - Initial enrichment
 - Date of core introduction
- Experimental validation under way between Argonne National Laboratory and Texas A&M University
- Project plan uses surrogate (non-nuclear) fuel pebbles

ACCOUNTING PEBBLE FUEL

- Material accounting and control is essential for effective safeguards implementation
- Item accounting of pebbles is unfeasible
 - ~10⁵ pebbles in reactor vessel
- Challenges of radiological (gamma) scanning of pebbles for burnup measurements
 - Uncertainty of using burnup as distinguishing characteristic
 - Similar burnup achieved by different paths
 - Required cooling time for burnup measurements

ACCOUNTING PEBBLE FUEL

- Material accounting and control is essential for effective safeguards implementation
- Item accounting of pebbles is unfeasible
 - ~10⁵ pebbles in reactor vessel
- Radiological (gamma) scanning of pebbles for burnup measurements
- Extrinsic, non-radiological features to be used for accounting and control
 - Shortened ex-core time for pebbles
 - Dependent on fidelity of engineered features
 - Unique identification is challenging

MATERIAL CONTROL & ACCOUNTING CONCEPT

- Pebble tracking using microspheres as an engineered unique identifier for material control/pebble tracking
 - Minimal impact on neutron multiplication factor (k-eff)
 - High thermal conductivity
 - Configuration of microspheres serve as unique identifier
- Item-type MC&A approach
 - Items-in/items-out

SURROGATE PEBBLE FABRICATION

- Embedding YSZ microsphere within graphite matrix
 - Yttria Stabilized Zirconia (Y₂O₃-ZrO₂) microspheres (1mm- and 2mm diameter)

(barns)

Cross Section

- Neutronically neutral
- High thermal conductivity
- Varying diameters

SEM micrographs of YSZ microspheres [2mm-diameter]

SURROGATE PEBBLE FABRICATION

- Embedding YSZ microsphere within graphite matrix
 - Yttria Stabilized Zirconia (Y₂O₃-ZrO₂) microspheres (1mm- and 2mm diameter)
 - Controlled square and triangular orientations of varied spacings
 - Planar and curved surfaces

YSZ microsphere distribution in CF matrix (square and triangular lattices)

Surrogate glass pebble with YSZ microspheres

- Ultrasound imaging system (COTS):
 - Ultrasonix Sonix Touch ultrasound imaging system
- Preliminary controlled experiment for assessing echogenicity properties of YSZ microspheres
 - Medium:
 - Gelatin phantom
 - Graphite matrix
 - Orthogonal scanning paths
 - Configurations:
 - Sample 1: 3-mm spacing
 - Sample 2: 6-mm spacing

Microspheres in transparent gelatin phantom

Microspheres in graphite matrix

- Microsphere configurations
 - Sample 1: 3-mm spacing
 - Sample 2: 6-mm spacing
- Histogram data
 - In opaque medium, microspheres are darker than background
 - More darker pixels correlate to more microspheres
 - Lower histogram peak = higher number of microspheres in VOI

Sample 1: 3mm spacing

Sample 2: 6mm spacing

Microspheres in graphite matrix

- Identification of batches or types of pebbles possible based on microsphere density
 - Between samples 1 & 2 (3mm-spacing and 6mm-spacing), resolution is <u>1.17%</u>
 - Discretized densities for differing types of pebbles
 - Lack of microspheres can be identified
 - Resolution of microsphere imaging can be used for varying pebble enrichment levels

In Sample 1, a lower peak implies more images have darker pixels which signifies higher density of microspheres.

More spacing samples needed for better characterization of uncertainty

- Second attempt yielded 17 intensity peak separation between 3mm and 6mm spacing
 - Allows for more confidence in discretization
 - Alternative graphite matrix curing process provides easier microsphere identification

Better understanding of pebble fabrication process in graphite matrices is needed for identifying YSZ microspheres

PEBBLE SAMPLING SYSTEM

- Review of pebble sampling/separator systems
 - THTR
 - HTR-10
 - AVR
- Modeling movement through reactor vessel upon discharge
 - Experimental model scaled to 25.4mmdiameter spheres
- Pebble singulizer for individual scans
 - Statistical sampling of pebbles/batches

IMPLEMENTATION APPROACH

- Imaging/identification system as complementary to burnup measurement system
 - Pebble singulizing occurring regardless
 - No cooling time required
 - Decrease pebble time ex-core
 - Expedited adjudication of pebble type by
 - Uranium enrichment
 - Input batch
 - Secondary classification of pebbles with extrinsic feature (additional to burnup measurement)
- Pebble scanning system prototype to be laboratory deployed in summer 2021

REMAINING WORK

- Determining limitations of system being used to discretize pebble types instead of uniquely identifying individual pebbles
 - Static scans of spherical surface assuming homogeneous distribution of microspheres
 - Based on resolution of imagining system and volume density of microspheres in graphite coating
 - Limited by YSZ microspheres in graphite matrix
 - Required engagement with fuel fabricators

CONCLUSIONS

- Potential for simplified monitoring/accounting approach via determination of pebble type and subsequent re-insertion
 - Non-radiological measurement
 - Rapid identification
 - Number of types dependent on system resolution
- Prototype system for in-situ use
 - Target: end of FY21

