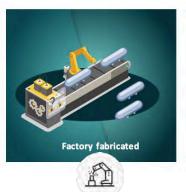


The DOE Microreactor Program Why MARVEL?

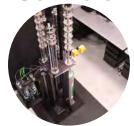
2022 MARVEL Technology Review

October 19th - 20th, 2022

John Jackson, Ph.D. | National Technical Director, DOE MRP



Microreactors Megawatt-scale Advanced Nuclear Reactors


ENABLING TECHNOLOGIES

Fuel & Moderator

- Small Core,
- Long life,
- HALEU
- High-T Moderator •

Reactor **Controls**

- Automation
- Compact, in-core sensors
 - AI/ ML
- Remote Control

Power Conversion

- Skid mounted
- High Temp.
- Robust
- Flexible operation

Structural Material

- Creep resistance
- ASME Sec III, Div. 5 compliant
- NQA-1 supply chain

Neutron Reflector

- Low cost
- Manufacturability
- High moderating ratio
- High temperature

Transport & Siting

- **NEPA**
- Vibration isolation
- Transport shielding
- Licensing modernization

DOE Microreactor Program

Program Vision

Through cross-cutting research and development and technology demonstration support, by 2025 the Microreactor Program will:

- Achieve technological breakthroughs for key features of microreactors
- Empower initial demonstration of the next advanced reactor in the US
- Enable successful demonstrations of multiple domestic commercial microreactors.

Program Objectives

- Address critical cross-cutting R&D needs that require unique laboratory/university capability or expertise
- Develop R&D infrastructure to support design, demonstration, regulatory issue resolution, and M&S code validation
- Develop advanced technologies that enable improvements in microreactor viability

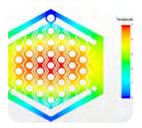
Microreactor Application

Integrated Nuclear TestingApplied R&D

Level

Readiness

Technology


Demonstration Support Capabilities

- Non-nuclear Testing
- Test-beds for developers/regulators

Technology Maturation

 Matures fundamental microreactor enabling technologies and capabilities

System Integration & Analyses

•Identification of technology and regulatory gaps for Microreactors

MARVEL Can Enable a New Class of Nuclear Reactors

(Microreactor Applications Research, Validation & EvaLuation)

Project Goals:

 Rapid development of a small-scale microreactor that provides a platform to test unique operational aspects and applications of microreactors

Primary Objectives:

- Operational microreactor in the most accelerated timeline possible
- Produce combined heat and power (CHP) to a functional microgrid
- Share lessons learned with commercial developers
- Train future operators

U.S. DOE Sponsor Program:

Create momentum,

<u>Champion</u> rapid technology maturation to de-risk industry <u>Collaborate</u> and engage microreactor end-user companies

- 100 kW-thermal
- 20 kW-electric
- ~10 feet tall
- < 12 tons
- 2 operators
- Self-regulating

MARVEL Value Statement for Public/End Users

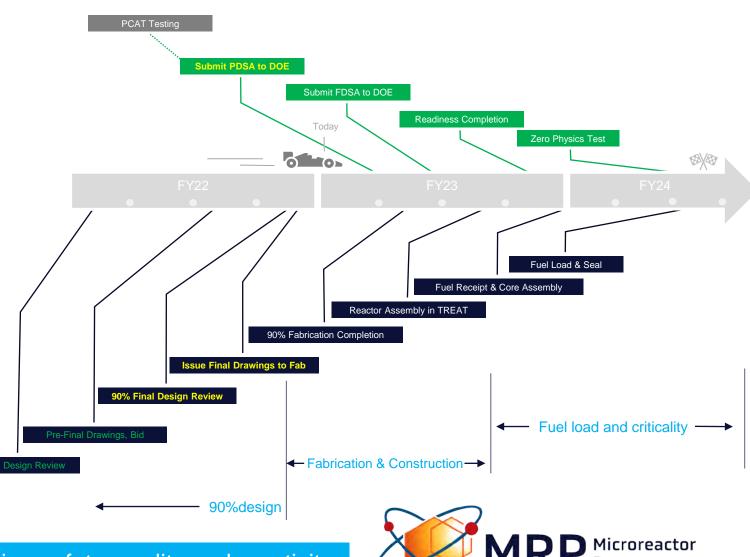
- Nuclear Energy is <u>new</u> to microreactor entry market
 - Operation complexity
 - Fear of colocation
 - Training needs
 - Reliability
- Customers reluctant to adopt microreactor technology unless they "see one" first (not willing to be the first in their backyard)
- Having no real test reactor is a barrier to market entry
 - End users deem it necessary to "interact" with a microreactor prior to providing customer requirements
 - End users unsure of technology potential prior to interaction

MARVEL will be the first microreactor to achieve criticality to power end user applications

MARVEL Value Statement for Developers

"With many companies working on microreactor concepts behind closed doors, I see unique value in having a system that can be shared and discussed across teams "

Reactor Controls



NEPA

Key Accomplishments in FY22 & Project Milestones

- Completed 11+ tests to increase technology readiness levels
- Completed accident analyses on expected performance on normal operation and postulated accident analyses
- Safety Design Strategy approved by DOE-ID
- Final EA and FONSI approved by DOE-ID
- Completed design, fabrication and assembly of full-scale electrically heated test system (aka PCAT).
- Fuel Supplier finalized
- Entered Final Design Stage-Completed Interim Design reviews
- Fabricators and suppliers engaged

Innovation- Speed without sacrificing safety, quality and creativity

Questions?

