EPRI Perspective on Common R&D Opportunities and Challenges for Microreactor Deployment

Craig Stover, Program Manager Advanced Nuclear Technology

GAIN-EPRI-NEI Microreactor Workshop May 13, 2021

 Image: margin black
 Image: margin black

 www.epri.com
 © 2021 Electric Power Research Institute, Inc. All rights reserved.

Electric Power Research Institute...Born in a Blackout

- Mission: advancing safe, reliable, affordable and environmentally responsible electricity for society
- Independent, nonprofit center for <u>collaborative</u> public interest energy and environmental research
- Major offices in Palo Alto, CA, Charlotte, NC, and Knoxville, TN
 - Laboratories in Knoxville, Charlotte and Lenox, MA
 - In-country presence around the world
- International membership and reach:
 - International members > 25% of EPRI research (~50% for nuclear)
 - EPRI members generate > 90% of the electricity in the United States (100% of US nuclear)
 - EPRI programs engage > 75% of nuclear operators globally

New York City: The Great Northeast Blackout, 1965

Advanced Reactors are Here

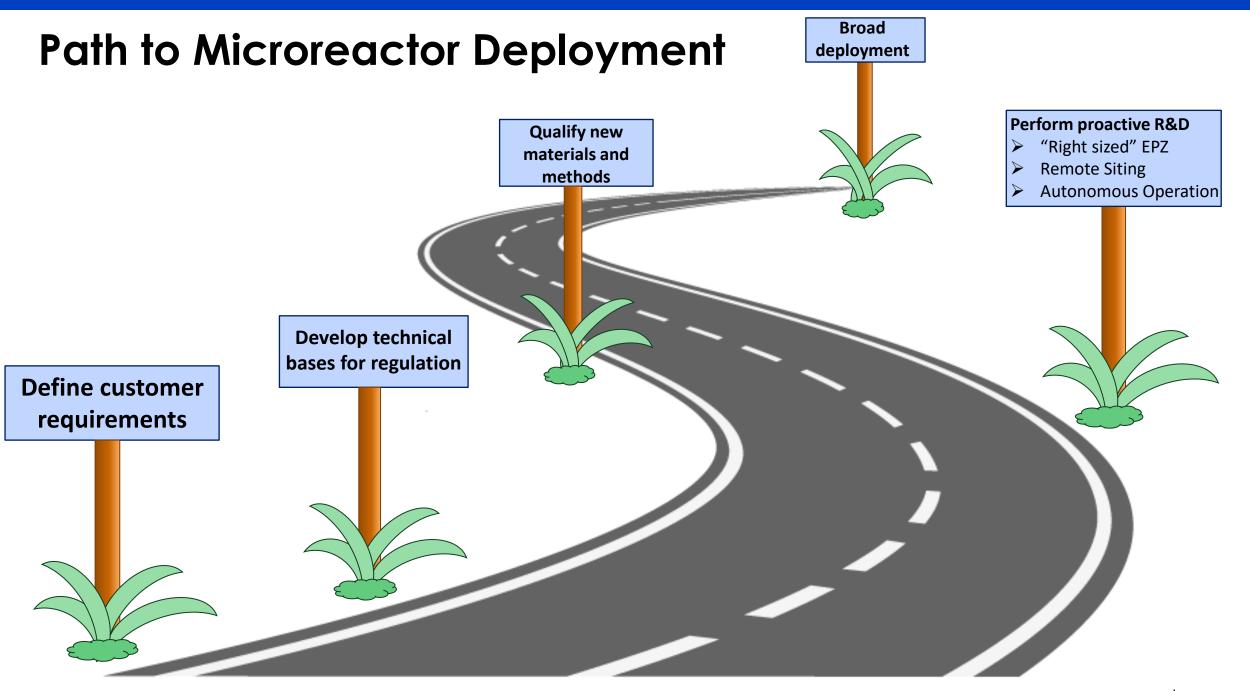
In this decade ...

- Microreactors
- Non-light water reactors
- Light-water small modular reactors

... will be deployed

žΞ

2020s


The time to prepare for an advanced reactor future is now

ANT's Focus

	Accelerating the deployment of nuclear power around the world
Informing Resource Planning	Driving Innovation
Siting and Owner Requirements	Design and Energy EconomicsDesign and EngineeringImage: Construction OptimizationImage: Construction
	From project initiation through initial operation ANT is an extension of your team

5

Cross-Cutting R&D Areas Supporting Microreactor Deployment

Security and Staffing

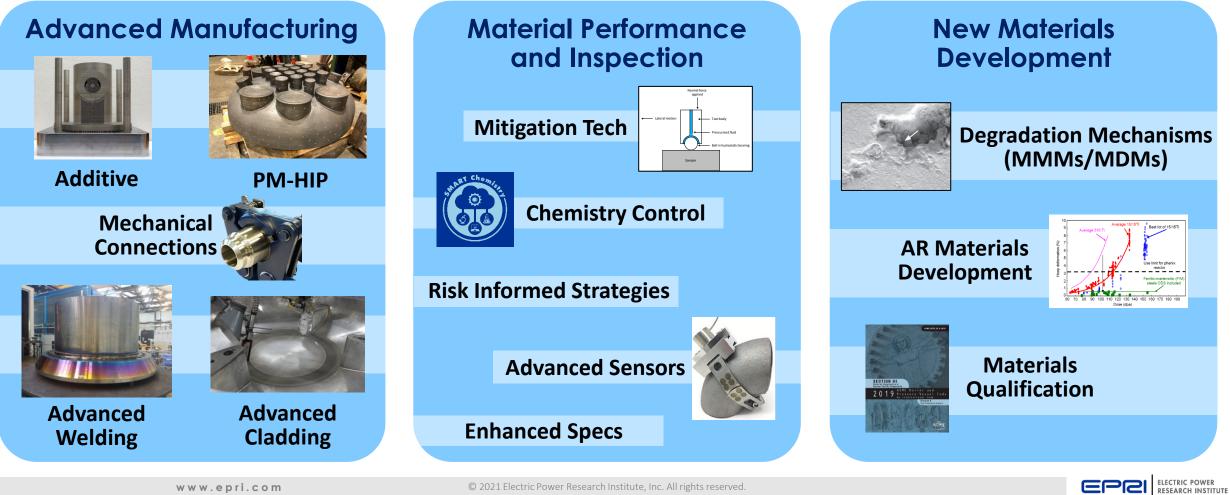
- Cyber security
- Physical security
- Staffing requirements

	Engineering and Decign	Operation and Maintenance
	Engineering and DesignDesign codes and standards	Remote and/or autonomous operationPerformance of novel components,
	Seismic design	configurations
•	Owner-operator requirementsDigital engineering	Inspection/NDEOperational experience and best practices

Materials and Manufacturing

- Material testing and qualification
- Fuel testing and qualification
- Fabrication and manufacturing methods
- Welding/joining technology
- Supply chain development and support

Safety Assessment and Licensing Basis


- Classification of SSCs
- Licensing basis events
- Defense in depth
- External hazards
- Reliability of novel components, configurations

Advanced Manufacturing & Materials

Identify, develop, qualify & implement more economical manufacturing, inspection & new materials that enable:

Higher Quality Components | Reduced Lead Times | Alternative Supply Chains | Cost Competitiveness | Enable Deployment

Materials Challenges for Advanced Reactors

Code Qualification

- Only 6 ASME/JSME Code Qualified alloys for high temperature service
- Additional Alloys Under Consideration

Can take **10 years** to fully qualify a new alloy

Just because the material is <u>Code Qualified</u> doesn't mean it is <u>approved</u> for Nuclear Service (*or optimized*)

www.epri.com

Environmental Effects

 Owner/Operator has the responsibility to demonstrate to regional regulator that the effects on structural failure modes are accounted for in their specific reactor design

What's Required for Regulatory Approval:

- Irradiation data
- Corrosion due to coolant
- Thermal performance—embrittlement over time
 Limited data exists for all the above

Still Not Done

Additional, critical data and understanding required for informed fabrication and design of AR components

• Optimized fabrication processes

• Weld data

AR (Gen IV) Material Gap Analyses Published 2019 - 2020 Downloadable at EPRI.com for Free

- Identify candidate materials for major AR families:
 - SFRs 3002016949
 - HTGRs/GFRs 3002015815
 - LFRs 3002016950
 - MSRs 3002010726
- Review available data for implementation into designs
- Outline development and validation programs

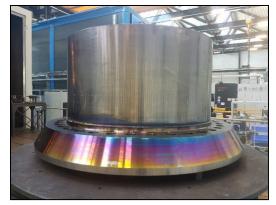
Austenitic Stainless Steels

316H SS	Extend BPV-III Div 5. Code properties to include time dependent behavior (Creep. Creep fatigue)
	Development and demonstration of cladding (Mo rich) for protection
316FR SS	Code qualification properties for ASME code Sec III Div 5 for 316FR including time dependent properties
Type 15-15Ti SS	Verification of swelling resistance
	Development of code properties for 15-15Ti material design
Alumina Forming SS	Demonstration of adequate resistance to irradiation/swelling at expected high dpa
	Development of processing and joining of alumina forming austenitic stainless steels
D9 Stainless Steel	Development of for ASME Code Sec III Div 5 properties (including time dependent properties) for D9
	Development of swelling behavior at long times under realistic conditions – demonstrate adequacy

Ferritics-Martensitics and Low Alloy Steels

Ferritic-Martensitic9Cr	Demonstration of adequate resistance to swelling at high fluence range. Time dependent properties for ASME Code Sec III Div 5. Development of fabrication and effective joining methods	
Ferritic-Martensitic12Cr	Demonstration of adequate resistance to swelling at high fluence range. Time dependent properties for ASME Code Sec III Div 5. Development of fabrication and effective joining methods	
Ferritic Martensitic	Validation of commercial reliability – Properties sensitivity to heat treatment/local microstructures Response to fabrication processes – welding practices	
LAS	Time dependent and fatigue properties for ASME code Sec III Div 5	

Nickel-Based Alloys


Hastelloy N	Demonstration of radiation tolerance of Hast N variants (Proper understanding of chemistry→ microstructure → properties Development of properties for ASME Code Sec III Div 5 certification
800H and 617	Summary Document of Properties

AR Materials Development Industry Coordination Workshop Planned for June

Advanced Manufacturing Techniques

- Eliminate Long Lead Forgings
 - Traditionally 2-5 year lead time
 - PM-HIP components produced in 6-12 months
 - Goal to reduce to 40% of costs
- Powder Metallurgy Hot Isostatic Processing
 - Produces near-net shaped components
 - Eliminates 1000's of hour of machining
- Electron Beam Welding (EBW)
 - 10x reduction in typical weld times, compared to conventional welding processes and methods.
 - Demonstrate EBW for fabricating reactor sections
- Diode Laser Cladding
 - Reduces cladding material by > 50%
 - No machining required after application
- Advanced Machining
 - Reduces machining time by up to 4X

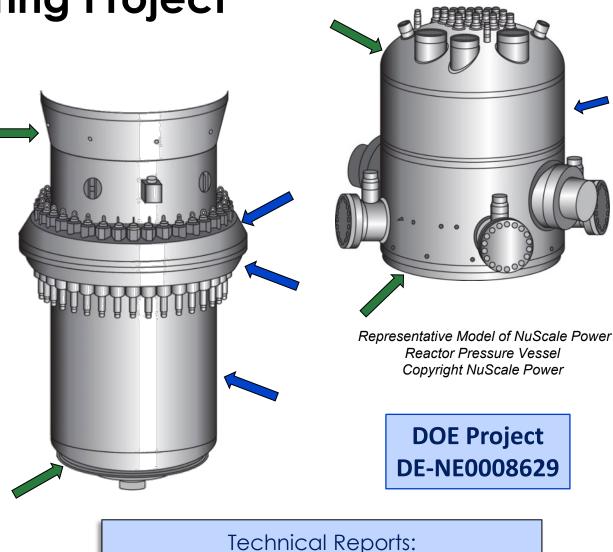
Lower RPV Flange Shell Mockup Electron Beam Weld ~6 ft (1.82m) diameter

Completed in 47 minutes

Goal = Accelerate Commercial Deployment of Small Modular Reactors

SMR Advanced Manufacturing Project Objectives

- Rapidly accelerate the deployment of SMRs
- Develop/Demonstrate new methods for manufacture & fabrication of a RPV in < 12 months
- Eliminate 40% from the cost of an SMR RPV
- Primary Advanced Methods:
 - Powder Metallurgy-Hot Isostatic Pressing (PM-HIP)
 - Electron Beam Welding
 - Diode Laser Cladding



www.epri.com

3002015814: Progress Report (Year 1) 3002019335: Progress Report (Year 2)

SMR Advanced Manufacturing Project

Mockup Fabricated from Forgings & Assembled via Electron Beam Welding

Circumferential Welds Completed in < 60 minutes

www.epri.com

SMR Advanced Manufacturing Project Lower RPV Assembly

www.epri.com

Together...Shaping the Future of Electricity

