Technology Maturation for Microreactor Program Review

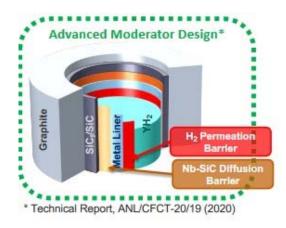
Holly Trellue, Technical Area Lead Los Alamos National Laboratory

March 8, 2023

Outline

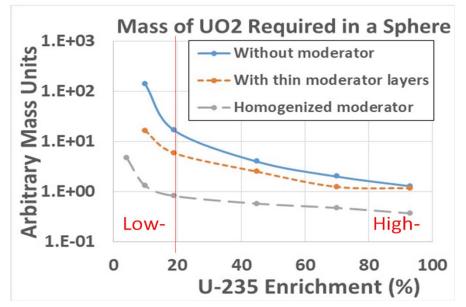
Overview

•	High Temperature Moderator Material	
	 Hydrogen Permeation/DistributionAdi Shivprasad (LAN) 	IL)
	 Post Irradiation Examination of Yttrium Hydride (YH_x)Nedim Cinbiz (INL 	_)
	 Coatings and Cladding for YH_xSumit Bhattacharya (ANL) 	L)
•	Instrumentation and Sensors	
	 MACS/AcousticsChris Petrie (ORNL))
	 Acoustic Measurements)
•	Heat Transfer/37 Heat Pipe Test ArticleBob Reid (LANL))
•	NEUP – Structural IntegrityScott Thompson (KSU))
•	Structural Material	
	 PM-HIP code caseTate Patterson (INL))
	 Additive Manufactured MolybdenumJohn Carpenter (LANL 	.)
•	NEUP – Heat Pipe FailuresVictor Petrov (UMICH))
•	NEUP – Heat Exchanger Technology Greg Nellis/Curtis Foster (WISC	C)
•	NEUP – Hydrogen Transport in Moderator Jeff King (CSU))


• Future Work/Wrap-Up

Five control areas are currently supported

- High Temperature Moderator Material
 - INL (Chase Taylor)
 - LANL (Adi Shivprasad)
 - ANL (Latif Yacout)
 - Instrumentation and Sensors
 - ORNL (Chris Petrie)
 - INL (Troy Unruh)
 - LANL (TJ Ulrich)
- Heat Transfer
 - LANL (Bob Reid)
- Structural Material
 - INL (Sam Sham/Tate Patterson)
 - LANL (John Carpenter)
- Fuels Scoping
 - LANL (Scarlett Widgeon Paisner)
 - INL (Nicolas Woolstenhulme)
 - ANL (Latif Yacout)



How Technology Maturation Meets Program Objectives

- Through cross-cutting research and development and technology demonstration support, achieve technological breakthroughs for key features of microreactors, examine:
 - Moderation to reduce required fuel mass
 - Instrumentation and sensors
 - Advanced heat transfer
- Meet critical R&D needs of existing developers that require national lab or university expertise or capabilities.
 - Develop and irradiate samples of moderating material
 - Build and test non-nuclear test articles
- Develop advanced technologies and concepts for nextgeneration microreactor applications and systems.
 - Design and fabricate state-of-the-art technology
 - Understand performance of systems with instruments
- Enable future microreactor applications
 - Coupling of the above components and developing results for validating predictive performance

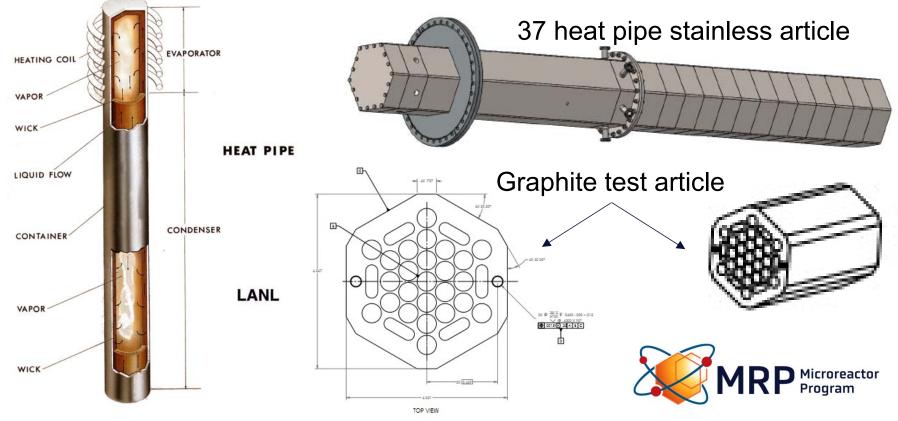
High Temperature Moderator Material

- Presence of moderator significantly decreases overall mass of fuel required in a microreactor by thermalizing neutrons and increasing probability of fission.
- Investigate materials performance, fabrication, and testing of moderators. FY23 work involves:
 - Post irradiation examination of yttrium hydride material irradiated in the Advanced Test Reactor in FY21 (INL)
 - Updating the advanced moderator material handbook plus permeation and diffusion tests (LANL)
 - Examining cladding and coating to contain the hydrogen over time and increasing temperature during microreactor operation (ANL).

Instrumentation and Sensors

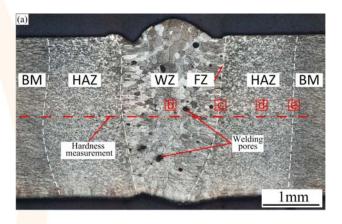
Hardware and software is being developed as part of the microreactor automated control system (MACS) in conjunction with the MARVEL microreactor (INL).

Courtesy of Anthony Crawford, INL


- Ultimate goal: hardware-in-the-loop performance demo with software to move control drums with reactivity feedback of the system (ORNL).
- Development and testing of fiber optic sensors for determining temperatures, stress/strain, and acoustic measurements in a microreactor structural material (ORNL).
- Additional acoustic sensing techniques for detecting flaws in a solid structure of a core are being researched (LANL) :
 - Resonant ultrasound spectroscopy (RUS)
 - Empirical Green Function (EGF)
 - Digital Image Correlation (DIC).

Heat Transfer: focus is heat pipes w/lower TRL than gas coolant

- Both a 37 heat pipe stainless steel test and a graphite test article are being fabricated.
 - 37 heat pipe test article is 2 m long: 1/2 with heaters and heat pipes filled with sodium and other 1/2 with heat pipes and a heat exchanger to produce thermal energy at nonnuclear MAGNET facility.
 - Graphite article has ~13 heat pipes and other holes for heaters and maybe hydride moderator material, to be eventually tested at MAGNET.
 - Horizontal and vertical heat pipe tests are also underway, then transfer of knowledge of test article and heat pipe operation to industry.



Structural Material

- Materials are needed within microreactor core itself either as a core block, vessel, or surrounding structure
 - Ceramic moderating materials such as graphite can thermalize neutron energy spectrum and utilize high assay low enriched uranium (HALEU) while holding core together effectively.
 - Stainless steel is traditional material in a reactor core; new techniques such as powder metallurgy hot isostatic pressing (PM-HIP) can produce metallic components (INL).

Refractory Metals

- Scoping study in progress: examine Nb1Zr and/or molybdenum alloys such as Titanium-Zirconium-Molybdenum (TZM) for application as a core block (particularly in a faster neutron energy spectrum microreactor) and/or structural material in a system.
- R&D for additive manufacture of TZM is underway (LANL).

Technology Maturation Wrap-Up

Holly Trellue, Technical Area Lead

Fuels Scoping Study

- Goal: Determine if appropriate R&D programs are in place for Microreactor fuels being proposed or if gaps exist
- Examples of features to be examined in fuels:
 - High fissile density,
 - Reliability,
 - Tolerate power/thermal cycles,
 - Withstand accident scenarios,
 - Economic to fabricate,
 - Fabrication development and performance testing.

Fuel types within study	Microreactor fuels being considered
TRISO particle fuel (LANL)	TRi-structural ISOtropic (TRISO)
Molten salt fuels (INL)	LEU w/ salt
UN (ANL)	UF ₄
MOX fuels (ANL)	UZrH
UO ₂ -based fuels (LANL)	UO ₂
Metallic fuels (INL)	Metallic

Fuels Scoping Study

- Goal: Determine if appropriate R&D programs are in place for Microreactor fuels being proposed or if gaps exist
- Examples of features to be examined in fuels:
 - High fissile density,
 - Reliability,
 - Tolerate power/thermal cycles,
 - Withstand accident scenarios,
 - Economic to fabricate,
 - Fabrication development and performance testing.

Fuel types within study	Microreactor fuels being considered
TRISO particle fuel (LANL)	TRi-structural ISOtropic (TRISO)
Molten salt fuels (INL)	LEU w/ salt
UN (ANL)	UF ₄
MOX fuels (ANL)	UZrH
UO ₂ -based fuels (LANL)	UO ₂
Metallic fuels (INL)	Metallic

Future Work and Conclusions

- The goal of Technology Maturation is to increase our knowledge about technology that could be used for microreactors through research and development and experimental testing.
- Details of particular microreactor designs are not explored, but skills and techniques gained will be passed on to industrial partners for their benefit in building systems.
- All five control areas will expand with more potential work, and collaborations will continue.
- Feel free to contact me or other work package managers with ideas or questions: trellue@lanl.gov.

